Theoretische Physik I Mathematische Grundlagen

http://www.tu-chemnitz.de/physik/THUS/ de/lehre/MM2_SS15.php

Dr. P. Cain

cain@physik.tu-chemnitz.de Raum 2/P310, Telefon 531-33144

F. Teichert

fabian.teichert@physik.tu-chemnitz.de Raum 2/W449, Telefon 531-32314

14/1 Gegeben sind die Vektoren \vec{a} , \vec{b} , \vec{c} und \vec{d} sowie die Punkte P und Q.

Die Ebene E_1 wird durch die Vektoren \vec{a} und \vec{b} und die Ebene E_2 wird durch die Vektoren \vec{c} und \vec{d} aufgespannt. Der Punkt P liegt in E_1 und der Punkt Q in E_2 .

$$\vec{a} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \qquad \vec{c} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \qquad \vec{d} = \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}$$

$$P = (1, -2, -3) \qquad Q = (-2, 1, 0)$$

Fertigen Sie eine Skizze an. Bestimmen Sie

- a) die selektive Form und die Hessesche Normalenform der Ebenen E_1 und E_2 .
- b) die Schnittgerade und den Schnittwinkel der Ebenen.
- c) den Abstand von Q zu E_1 bzw. von P zu E_2 .
- d) welche drei Vektoren das Parallelepiped mit dem größten bzw. dem kleinsten Volumen aufspannen.
- 14/2 Welche Flächen werden mit folgenden Gleichungen beschrieben? (k, a sind reele)Konstanten, \vec{e} ist ein Einheitsvektor)

Hinweis: Tragen Sie jeweils in einer Skizze mehrere Ortsvektoren \vec{r} ein, die die angegebenen Bedingungen erfüllen.

- a) $|\vec{r} \times \vec{e}|^2 = k^2 r^2$
- b) $a\vec{r}^{2} = 1$
- c) $|\vec{r} (\vec{r} \cdot \vec{e})\vec{e}| = k$
- d) $\vec{e} \cdot \vec{r} (\vec{e} \times \vec{r})^2 = 0$
- 14/3 Ein Punkt wird vom Ort \vec{r} zum Ort $\vec{r} + d\vec{r}$ verschoben. Welche Bewegung ergibt sich mit der Nebenbedingung an $d\vec{r}$? (Der Vektor \vec{n} ist ein beliebiger konstanter Vektor)
 - a) $d|\vec{r}| = 0$
 - b) $d(\vec{n} \cdot \vec{r}) = 0$
 - c) $d|\vec{r}| = d(\vec{n} \cdot \vec{r}) = 0$

- 14/4 Ein Punkt mit dem Ortsvektor \vec{r} soll so verschoben werden, dass er die angegebenen Bewegungen beschreibt. Wie lauten die zugehörigen Nebenbedingung? (Der Vektor \vec{n} ist ein beliebiger konstanter Vektor)
 - a) Bewegung auf Zylindermantel mit Achsenrichtung \vec{n}
 - b) Bewegung auf Geraden mit Richtung \vec{n}
 - c) Bewegung auf Kreislinie in der Ebene $\vec{n}\cdot\vec{r},$ die auch Element eines Zylindermantels ist.