Theoretische Physik I Mathematische Grundlagen

http://www.tu-chemnitz.de/physik/THUS/ de/lehre/MM2_SS15.php

Dr. P. Cain

cain@physik.tu-chemnitz.de Raum 2/P310, Telefon 531-33144

F. Teichert

fabian.teichert@physik.tu-chemnitz.de Raum 2/W449, Telefon 531-32314

$\ddot{U}bung \ 12 \ (22.04.2015) \\ - \ \mathrm{Vektorrechnung} \ -$

12/1 Welche der folgenden Aussagen sind wahr für beliebige Vektoren \vec{a} , \vec{b} und \vec{c} ?

a)
$$\vec{c} \cdot (\vec{a} \times \vec{b}) = (\vec{b} \times \vec{a}) \cdot \vec{c}$$

b)
$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$$

c)
$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$$

d) wenn
$$\vec{d} = \lambda \vec{a} + \mu \vec{b}$$
 dann gilt $(\vec{a} \times \vec{b}) \cdot \vec{d} = 0$

e)
$$(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{b}) = \vec{b} [\vec{b} \cdot (\vec{c} \times \vec{a})]$$

- 12/2 Löse unter Verwendung der Regeln der Vektorrechnung
 - a) Vereinfache den Ausdruck $\vec{c}(\vec{a} \times (\vec{b} \times \vec{c})) + (\vec{c} \times \vec{a})(\vec{c} \times \vec{b})$
 - b) Zeige, dass Folgendes gilt: $(\vec{a} \times \vec{b})^2 + (\vec{a} \cdot \vec{b})^2 = a^2b^2$
 - c) Zeige, dass die Vektoren \vec{a} und \vec{b} genau dann senkrecht aufeinanderstehen, wenn gilt: $|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$
- 12/3 Für welche α stehen \vec{a} und \vec{b} senkrecht bzw. parallel zueinander?

a)
$$\vec{a} = \begin{pmatrix} -2\\ \alpha/2\\ -1 \end{pmatrix}$$
 $\vec{b} = \begin{pmatrix} \alpha^2\\ -2\\ \alpha \end{pmatrix}$

a)
$$\vec{a} = \begin{pmatrix} -2\\ \alpha/2\\ -1 \end{pmatrix}$$
 $\vec{b} = \begin{pmatrix} \alpha^2\\ -2\\ \alpha \end{pmatrix}$ b) $\vec{a} = \begin{pmatrix} 3\alpha\\ 4\\ -2 \end{pmatrix}$ $\vec{b} = \begin{pmatrix} -2\alpha\\ \alpha\\ -3 \end{pmatrix}$

c)
$$\vec{a} = \begin{pmatrix} e^{\alpha} \\ e^{-\alpha} \\ \alpha \end{pmatrix}$$
 $\vec{b} = \begin{pmatrix} 2 \\ e^{\alpha} + 1 \\ 0 \end{pmatrix}$

12/4 Berechnen Sie den Schnittwinkel zwischen den Raumdiagonalen eines Würfels der Kantenlänge a.