Theoretische Physik I Mathematische Grundlagen

http://www.tu-chemnitz.de/physik/THUS/de/lehre/MM1_WS1314.php

Dr. P. Cain

cain@physik.tu-chemnitz.de Raum 2/P310, Telefon 531-33144

F. Günther

florian.guenther@s2008.tuchemnitz.de Raum 2/P312, Telefon 531-32334

Übung $9_{(01.02.2014)}$

-Arbeiten mit Mathematica-

- 9/1 Überprüfen Sie die Ergebnisse ausgewählter Aufgaben.
 - a) Bestimmen Sie die ersten Ableitungen der Funktionen aus 1/1.
 - b) Stellen Sie f(x), f'(x), f''(x) sowie die Faktoren der Funktionen f(x) aus 1/3 in einem Plot dar. Verdeutlichen Sie sich die Gültigkeit der für x_E bzw. x_W abgeleiteten Bedingungen.
 - c) Plotten Sie eine Funktion aus 1/4 mit verschiedenen Rechtecken.
 - d) Bestimmen Sie die Stammfunktionen der Funktionen aus 2/2, 2/4 und 2/5 sowie die bestimmten Integrale aus 2/6.
 - e) Plotten Sie einige Funktionen aus 3/4 mit der zugehörigen Taylorreihe für unterschiedliche Entwicklungsordnungen.
 - f) Bestimmen Sie Erwartungswert und Varianz der Aufgaben 4/3, indem Sie das Zufallsexperimente simulieren.
 - g) Plotten Sie die komplexen Zahlen aus 5/1 und 5/4 in der komplexen Zahlenebene.
 - h) Veranschaulichen Sie die Konvergenz der Fourierreihen aus 6/3.
 - i) Lösen Sie die Differentialgleichungen aus 7/1, 7/4, 8/1 und 8/5.
 - j) Stellen Sie die Ergebnisse aus 7/2, 7/3 und 7/5 für sinnvolle Werte graphisch dar.
- 9/2 Computer sind im allgemeinen nicht in der Lage tatsächliche Zufallszahlen zu erzeugen. Es handelt sich vielmehr um eine komplizierte Funktionen f(x), die eine Folge $\{r_n\}$ erstellt, die zufällig zu sein scheint. Man spricht von sogenannten Pseudozufallszahlen.
 - a) Die einfachsten Pseudozufallszahlen ergeben sich in der Form $r_{n+1} = (a \cdot r_n + c) \mod m$. Programmieren Sie einen solchen Zufallsgenerator.
 - b) Verwenden Sie ihren Generator um einen normierten Vektor

$$\vec{e}_n = (r_{3n}, r_{3n+1}, r_{3n+2}) / \sqrt{r_{3n}^2 + r_{3n+1}^2 + r_{3n+2}^2}$$

aus drei aufeinanderfolgenden Zufallszahlen zu generieren. Stellen Sie eine große Anzahl an Punkten graphisch dar. $(a=106,\ c=1283,\ m=6075)$

c) Verwenden Sie den Generator

$$r_{n+1} = f(r_n) = \mu r_n (1 - r_n) \quad (r_n \in [0, 1]; \ \mu \in [0, 4]).$$

Stellen Sie die erhaltene Zahlenfolge für unterschiedliche Startwerte r_0 und unterschiedliche μ graphisch dar.

Stellen Sie die Häufigkeitsverteilung für unterschiedliche μ in einem Histogramm dar.