Theoretische Physik I Mathematische Grundlagen

http://www.tu-chemnitz.de/physik/THUS/ de/lehre/MM1_WS1314.php Dr. P. Cain

cain@physik.tu-chemnitz.de Raum 2/P310, Telefon 531-33144

F. Günther

florian.guenther@s2008.tuchemnitz.de Raum 2/P312, Telefon 531-32334

$\ddot{\text{U}}\text{bung }8_{(06.02.2014)}$

-lineare Differentialgleichungen-

8/1 Lösen Sie folgende homogene lineare Differentialgleichungen 1. Ordung

a)
$$y' + \frac{x^2}{2}y = 0$$

$$b) \quad y' + \sin x \ y = 0$$

a)
$$y' + \frac{x^2}{2}y = 0$$
 b) $y' + \sin x \ y = 0$ c) $\frac{y'}{2} - \frac{x}{x^2 - 1} \ y = 0$

$$d) \quad y' + x \ y = 0$$

$$y' + \ln x \ y = 0$$

d)
$$y' + x y = 0$$
 e) $y' + \ln x y = 0$ f) $y' + \tan x y = 0$

8/2 Lösen Sie folgende inhomogene lineare Differentialgleichungen 1.Ordung.

a)
$$y' + x^2 y = x^2 e^{-\frac{x^3}{3}}$$

$$b) \quad y' = \sin x (1 - y)$$

c)
$$y' + \tan x \ y = -\sin x \cos x$$

8/3 Eine Flasche Bier wird mit $T_1 = 7$ °C aus einem Kühlschrank genommen und 90 min bei $T_0 = 19$ °C stehen gelassen. Anschließend besitzt es eine Temperatur von $T_2 = 15$ °C. Wie lange muss das Bier wieder in den 7 °C-Kühlschrank, damit man es mit annehmbaren $T_3 = 8$ °C trinken kann. Es gelte das Newtonsche Abkühlungsgesetz:

$$\frac{\mathrm{d}T}{\mathrm{d}t} = -k(T - T_0)$$

8/4 Bestimmen Sie die Funktion y(x) die folgende lineare Differentialgleichungen

a)
$$y'' + 2y' + y = 0$$

b)
$$y'' + 3y' - 4y = 0$$

c)
$$y'' - 2y' + 5y = 0$$

a)
$$y'' + 2y' + y = 0$$

b) $y'' + 3y' - 4y = 0$
c) $y'' - 2y' + 5y = 0$
Zusatz: $y'' + 4y = \cos x$

8/5 Lösen Sie folgende inhomogene lineare Differentialgleichungen 2.Ordung.

a)
$$y'' + 4y' - 12y = \frac{1}{6}$$

Ansatz:
$$y_i(x) = C$$

a)
$$y'' + 4y' - 12y = \frac{1}{6}$$
 Ansatz: $y_i(x) = C$
b) $\frac{1}{3}y'' - 2y' + 3y = \frac{1}{3}x^2$ Ansatz: $y_i(x) = Ax^2 + Bx + C$
c) $y'' + y' + \frac{5}{2}y = e^{x/3}$ Ansatz: $y_i(x) = Ae^{x/3}$

Ansatz:
$$y_i(x) = Ax^2 + Bx + C$$

c)
$$y'' + y' + \frac{5}{2}y = e^{x/3}$$

Ansatz:
$$y_i(x) = Ae^{x/3}$$

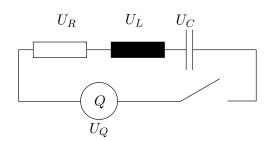
8/6 Ein Serienresonanzkreis wird zum Zeitpunkt $t_0=0$ geschlossen. Für t<0 gilt I(t)=0 sowie $U_R=U_L=U_C=0$.

Die Spannungsquelle Qhat eine Spannung von $U_Q=const.$, d.h. für $t\geq 0$ gilt $U(t)=U_Q.$

Es gilt das 2. Kirchhoffsches Gesetz:

$$-U_Q + U_R(t) + U_L(t) + U_C(t) = 0$$

Bestimmen Sie die Stromkennlinie I(t) für $t \ge 0$.



Beachte: Es ist eine Fallunterscheidung bezüglich der Verhältnisse von Dämpfungsfaktor $d=\frac{R}{2L}$ zur Kreisfrequenz $\omega_0=\frac{1}{\sqrt{RC}}$ durchzuführen!