Theoretische Physik I Mathematische Grundlagen

http://www.tu-chemnitz.de/physik/THUS/ de/lehre/MM1_SS15.php

Dr. P. Cain

cain@physik.tu-chemnitz.de Raum 2/P310, Telefon 531-33144

F. Teichert

fabian.teichert@physik.tu-chemnitz.de Raum 2/W449, Telefon 531-32314

Übung 10 (30.06.2015) – Differentialgleichungen 1. Ordnung –

10/1 Ein Teilchen der Masse m tritt zum Zeitpunkt $t_0 = 0$ am Ort $x_0 = 0$ senkrecht in ein Medium ein und erfährt dort die Reibungskraft F_R . Zu welchem Zeitpunkt kommt das Teilchen zum stehen? Wie weit ist es in das Medium eingedrungen? Skizzieren Sie die Verläufe x(t) und v(t) sowie v(x).

a)
$$F_{\rm R} = -\beta \dot{x}^2$$

b)
$$F_{\rm R} = -\beta\sqrt{\dot{x}}$$

10/2 Eine Population wächst nach folgendem Gesetz:

$$\frac{\mathrm{d}N}{\mathrm{d}t} = aN(1 - bN) \qquad (a, b \in \mathbb{R}, b > 0)$$

a) Bestimmen Sie den zeitlichen Verlauf N(t) der Population (Anfangsbedingung: N_0). Machen Sie eine Fallunterscheidung bezüglich

i)
$$a < 0 \text{ und } bN_0 > 1$$

ii)
$$a < 0$$
 und $bN_0 < 1$

iii)
$$a > 0$$
 und $bN_0 > 1$

iv)
$$a > 0$$
 und $bN_0 < 1$

- b) Wie verhält sich das Wachstum für $b \approx 0$?
- c) Welches Verhalten beobachtet man für große Zeiten t?
- 10/3 Lösen Sie folgende homogene lineare Differentialgleichungen 1.Ordung.

a)
$$y' + \frac{x^2}{2}y = 0$$

$$b) y' + \sin(x)y = 0$$

b)
$$y' + \sin(x)y = 0$$
 c) $\frac{y'}{2} - \frac{x}{x^2 - 1}y = 0$

$$d) y' + xy = 0$$

e)
$$y' + \ln(x)y = 0$$

e)
$$y' + \ln(x)y = 0$$
 f) $y' + \tan(x)y = 0$

10/4 Lösen Sie folgende inhomogene lineare Differentialgleichungen 1.Ordung.

a)
$$y' + x^2y = x^2e^{-\frac{x^3}{3}}$$

b)
$$y' = \sin(x)(1 - y)$$

c)
$$y' + \tan(x)y = -\sin(x)\cos(x)$$

10/5 Eine Flasche Bier wird mit $T_1 = 7$ °C aus einem Kühlschrank genommen und 90 min bei $T_0 = 19^{\circ}$ C stehen gelassen. Anschließend besitzt es eine Temperatur von $T_2 =$ 15°C. Wie lange muss das Bier wieder in den 7°C-Kühlschrank, damit man es mit annehmbaren $T_3 = 8$ °C trinken kann? Es gelte das Newtonsche Abkühlungsgesetz:

$$\frac{\mathrm{d}T}{\mathrm{d}t} = -k(T - T_0)$$