Theoretische Physik I Mathematische Grundlagen

http://www.tu-chemnitz.de/physik/THUS/ de/lehre/MM1_SS15.php

Dr. P. Cain

cain@physik.tu-chemnitz.de Raum 2/P310, Telefon 531-33144

F. Teichert

fabian.teichert@physik.tu-chemnitz.de Raum 2/W449, Telefon 531-32314

Übung 7 $_{(09.06.2015)}$

– Komplexe Zahlen –

7/1 Bestimmen Sie jeweils den Realteil $\Re z$, den Imaginärteil $\Im z$, den Betrag |z| und das Argument arg z der folgenden komplexen Zahlen z_i . Stellen Sie die Zahlen in der komplexen Zahlenebene dar.

a)
$$z_1 = 1 + i$$

b)
$$z_2 = -\sqrt{3} + i$$

c)
$$z_3 = -4i$$

d)
$$z_4 = 2(\cos\frac{\pi}{6} - i\sin\frac{\pi}{6})$$

e)
$$z_5 = \sqrt{2}e^{-i\pi/4}$$

f)
$$z_6 = 2e^{i4\pi/3}$$

7/2 Berechnen Sie jeweils Summe $z_1 + z_2$, Differenz $z_1 - z_2$, Produkt $z_1 \cdot z_2$ und Quotient

a)
$$z_1 = 1 + i\sqrt{3}$$

$$z_2 = 1 - i$$

$$z_2 = 1 - i$$
 b) $z_1 = \cos t + i \sin t$ $z_2 = i$

c)
$$z_1 = 1 + 2i$$
 $z_2 = 3 - 4i$ d) $z_1 = 2 + 3i$ $z_2 = 2 - 3i$

$$z_2 = 3 - 4i$$

d)
$$z_1 = 2 + 3i$$

$$z_2 = 2 - 3i$$

7/3 Zeigen Sie die Gültigkeit folgenden Aussagen

a)
$$(z_1 + z_2)^* = z_1^* + z_2^*$$

b)
$$(z_1 - z_2)^* = z_1^* - z_2^*$$

c)
$$(z_1 \cdot z_2)^* = z_1^* \cdot z_2^*$$

d)
$$(z_1/z_2)^* = z_1^*/z_2^*$$

7/4 Bestimmen Sie den Real- und Imaginärteil von z.

a)
$$z = \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^6$$

b)
$$z = \frac{\frac{5}{2} + \frac{i}{2}}{2 + \frac{1}{1-i}}$$

c)
$$z = (\sqrt{3} + i)^{-2}$$

d)
$$z = \sqrt{-4i}$$

e)
$$z^8 = 256 (\cos 80^\circ + i \sin 80^\circ)$$
 f) $z = \sqrt[7]{i}$

f)
$$z = \sqrt[7]{2}$$

- 7/5 Betrachten Sie die eulersche und trigonometrische Darstellung der komplexen Zahlen.
 - a) Zeigen Sie die folgenden Zusammenhänge:

(1)
$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$

(2) $\sin x = \frac{e^{ix} - e^{-ix}}{2i}$

(2)
$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

b) Verwenden Sie die Beziehungen aus a) und zeigen Sie:

$$(1) \quad \frac{\mathrm{d}}{\mathrm{d}x}\sin x = \cos x$$

$$(2) \frac{\mathrm{d}}{\mathrm{d}x}\cos x = -\sin x$$

$$(3) \cos^2 x + \sin^2 x = 1$$

(4)
$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$

(5)
$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$

(6)
$$\sin 2\alpha = 2\sin \alpha \cos \alpha$$

$$(7) \sin^2 \alpha = \frac{1}{2}(1 - \cos 2\alpha)$$