Theoretische Physik I Mathematische Grundlagen

http://www.tu-chemnitz.de/physik/THUS/ de/lehre/MM1_SS15.php

Dr. P. Cain

cain@physik.tu-chemnitz.de Raum 2/P310, Telefon 531-33144

F. Teichert

fabian.teichert@physik.tu-chemnitz.de Raum 2/W449, Telefon 531-32314

$\ddot{U}bung \underset{- \text{ Verteilungen }-}{6} \text{ (02.06.2015)}$

- 6/1 Bestimmen Sie für die folgenden Zufallszahlen x den Erwartungswert μ und die Varianz σ^2 .
 - a) Eine Münze wird drei mal hintereinander geworfen. x = Anzahl(Kopf) - Anzahl(Zahl).
 - b) Zwei Würfel werden gleichzeitig geworfen. x ist die Differenz der beiden Zahlen.
 - c) Von einem gemischten Skatblatt werden zufällig zwei Karten gezogen. x ist die Summe der Punkte beider Karten. (7,8,9-keine Punkte; Bube-2 Punkte; Dame-3 Punkte; König-4 Punkte; 10-10 Punkte; Ass-11 Punkte)
 - d) Eine Münze wird mehrmals geworfen. x ist die Anzahl der Würfe bis das erste Mal Kopf erscheint.
- 6/2 Zeigen Sie, dass die folgenden Verteilungen normiert sind. Berechnen Sie den Erwartungswert und die Varianz.
 - a) geometrische Verteilung: $G(k) = p(1-p)^{k-1}$, $k \in \mathbb{N}$
 - $P(k) = \frac{\lambda^k}{k!} e^{-\lambda}$, $k \in \mathbb{N}_0$ b) Poissonverteilung:
 - $B(k) = \binom{n}{k} p^k (1-p)^{n-k} \quad , \quad k \in \mathbb{N}_0 \ , \ k \le n$ c) Binomialverteilung:
 - $p(x) = \lambda e^{-\lambda x}$, $x \in \mathbb{R}^+$ d) Exponential verteilung: