Theoretische Physik I Mathematische Grundlagen

http://www.tu-chemnitz.de/physik/THUS/ de/lehre/MM1_SS15.php

Dr. P. Cain

cain@physik.tu-chemnitz.de Raum 2/P310, Telefon 531-33144

F. Teichert

fabian.teichert@physik.tu-chemnitz.de Raum 2/W449, Telefon 531-32314

$\ddot{\textbf{U}}\textbf{bung 5}_{(26.05.2015)}$

– Fehlerrechnung –

- 5/1 Gegeben ist die Funktion f(x,y). Bestimmen Sie die partiellen Ableitungen erster Ordnung $\frac{\partial}{\partial x}f$ und $\frac{\partial}{\partial y}f$ sowie die partiellen Ableitungen zweiter Ordnung $\frac{\partial}{\partial x}\left(\frac{\partial}{\partial x}f\right)$, $\frac{\partial}{\partial y} \left(\frac{\partial}{\partial y} f \right), \ \frac{\partial}{\partial y} \left(\frac{\partial}{\partial x} f \right) \text{ und } \frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} f \right)$
 - a) $f(x,y) = x^2 + 2xy + y^2$ b) $f(x,y) = \sin x \cos y$ c) $f(x,y) = \sqrt{x^2 + y^2}$

- d) $f(x,y) = \ln y e^{-x^2}$ e) $f(x,y) = \frac{\sin x}{y}$ f) $f(x,y) = y^x$
- 5/2 Gegeben sind die Vektoren $\vec{a} = \begin{pmatrix} -x^2 \\ xy^2z \\ -xyz^2 \end{pmatrix}$ und $\vec{b} = \begin{pmatrix} yz \\ -xz \\ xy \end{pmatrix}$.

Berechnen Sie die partiellen Ableitungen

a) $\frac{\partial}{\partial x}\vec{a}$

b) $\frac{\partial}{\partial u}\vec{a}$

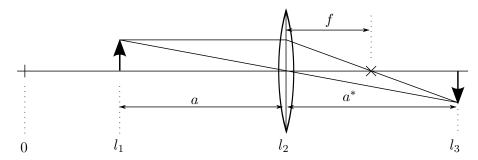
d) $\frac{\partial}{\partial x} \vec{b}$

e) $\frac{\partial}{\partial u}\vec{b}$

- g) $\frac{\partial}{\partial x} \left(\vec{a} \cdot \vec{b} \right)$
- h) $\frac{\partial}{\partial u} \left(\vec{a} \cdot \vec{b} \right)$
- i) $\frac{\partial}{\partial z} \left(\vec{a} \cdot \vec{b} \right)$
- 5/3 Leiten Sie die Fehlerformeln für folgende Formeln her

a)
$$\rho = \frac{m}{\pi h (R_a^2 - R_i^2)}$$

b)
$$N_{\rm A} = \frac{1}{2} \cdot \frac{M}{\rho \cdot d^3}$$


c)
$$\eta = \frac{2(\sigma_{\rm K} - \sigma_{\rm Fl}) \cdot g^4 \cdot t}{9l}$$

d)
$$c_{\rm S} = \frac{2N\lambda_{\rm c}fs}{r}$$

5/4 Die Brennweite f einer dünnen Linse soll durch Messen (siehe Abbildung) von Gegenstandsweite a und Bildweite a^* mit Hilfe der Linsengleichung bestimmt werden:

$$\frac{1}{f} = \frac{1}{a} + \frac{1}{a^*}$$

Bestimmen Sie den Größtfehler in Abhängigkeit von den Fehlern Δa und Δa^* . Wie ändert sich die Fehlerformel, wenn a und a^* nicht direkt sondern über Gegenstandsort l_1 , Linsenort l_2 und Bildort l_3 ermittelt werden?

