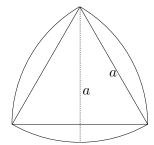
Theoretische Physik I Mathematische Grundlagen

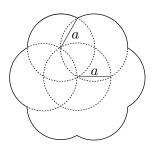
http://www.tu-chemnitz.de/physik/THUS/de/lehre/MM2_WS1415.php

Dr. P. Cain

cain@physik.tu-chemnitz.de Raum 2/P310, Telefon 531-33144


F. Teichert

fabian.teichert@physik.tu-chemnitz.de Raum 2/W449, Telefon 531-32314


$\ddot{U}bung~19~{\tiny (11.12.2014)}$

– Kurven-, Flächen- und Volumenintegrale & begleitendes Dreibein –

- 19/1 Bestimmen Sie den Flächeninhalt der dargestellten Figuren mit Hilfe von Polarkoordinaten und kartesischen Koordinaten.
 - a) Reuleaux-Dreieck:

b) Blume des Lebens:

- 19/2 Bestimmen Sie das Volumen eines Torus mit den Radien A und R.
- 19/3 Betrachten Sie die Raumkurve $(t, t^2, \frac{2}{3}t^3)$.
 - a) Berechnen Sie die Bogenlänge s im Intervall $t \in [t_1, t_2]$.
 - b) Wie groß ist die Krümmung $\kappa(t)$?
 - c) Geben Sie das begleitende Dreibein an der Stelle t=0 an.
- 19/4 Gegeben sei eine Raumkurve der Gestalt $\vec{r}(\psi) = (\psi \sin \psi, 1 \cos \psi, 4 \sin(\psi/2))$. Geben Sie das begleitende Dreibein an. Wie hängt ψ mit der Bogenlänge s zusammen?
- 19/5 Zeigen Sie, dass die Beschleunigung eines Teilchens auf der Bahn $\vec{r}(t)$ gegeben ist durch

$$\vec{a}(t) = \frac{\mathrm{d}v}{\mathrm{d}t}\vec{t} + \frac{v^2}{R}\vec{n}$$

mit der Teilchengeschwindigkeit v, den Tangentenvektor \vec{t} , dem Normalenvektor \vec{n} und dem Krümmungsradius R.