Theoretische Physik I Mathematische Grundlagen

http://www.tu-chemnitz.de/physik/THUS/ de/lehre/MM2_WS1415.php

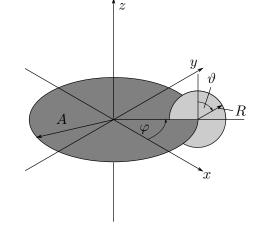
Dr. P. Cain

cain@physik.tu-chemnitz.de Raum 2/P310, Telefon 531-33144

F. Teichert

fabian.teichert@physik.tu-chemnitz.deRaum 2/W449, Telefon 531-32314

Übung 17 (27.11.2014)


17/1 Ein Toruskoordinatensystem $q = (R, \vartheta, \varphi)$ sei gegeben durch die Transformation in ein kartesiches Koordiantensystem $\hat{q} = (x, y, z)$

I:
$$x = (A + R \cdot \sin \theta) \cdot \cos \varphi$$

II:
$$y = (A + R \cdot \sin \theta) \cdot \sin \varphi$$

III: $z = R \cdot \cos \vartheta$

- Wie müssen die Definitionsbereiche der Koordiaten gewählt werden, damit die Transformation bijektiv ist?
- Bestimmen Sie die Funktionalmatrix und die Funktionaldeterminante.
- Wie lauten die Einheitsvektoren \vec{e}_i des Toruskoordinatensystems?
- d) Zeigen Sie, dass die Basis, die durch die Einheitsvektoren gebildet wird, orthogonal ist.

- Fertigen Sie eine Skizze an, in der Sie die Einheitsvektoren an drei selbst gewählten Punkten einzeichnen.
- 17/2 Bestimmen Sie für die in kartesischen Koordinaten gegebenen, zeitabhängigen Ortsvektoren $\vec{r}(t)$ die Geschwindigkeit $\vec{v}(t)$ und die Beschleunigung $\vec{a}(t)$ sowie deren Beträge zu den gegebenen Zeitpunkten t_1 und $t_2.$ Fertigen Sie eine Skizze an.

a)
$$\vec{r} = (t^3 + 2t, -3e^{-t}, t)$$

$$t_1 = 0 t_2 = 1$$

b)
$$\vec{r} = (t \sin \omega t, \cos \omega t, \tan \omega t)$$
 $t_1 = \frac{\pi}{2\omega}$ $t_2 = \frac{\pi}{\omega}$

$$t_1 = \frac{\pi}{2\omega}$$
 $t_2 = \frac{\pi}{\omega}$

c)
$$\vec{r} = (\alpha \ln t, t(\ln t - 1), \alpha e^{1-t})$$
 $t_1 = 1$ $t_2 = 2$

$$t_1 = 1$$

$$t_2 = 2$$