Theoretische Physik I Mathematische Grundlagen

http://www.tu-chemnitz.de/physik/THUS/de/lehre/MM2_WS1415.php

Dr. P. Cain

 $\begin{array}{l} {\rm cain@physik.tu\text{-}chemnitz.de} \\ {\rm Raum~2/P310,~Telefon~531\text{-}33144} \end{array}$

F. Teichert

fabian.teichert@physik.tu-chemnitz.de Raum 2/W449, Telefon 531-32314

$\ddot{U}bung~15~{\scriptstyle (13.11.2014)}$

– Vektorrechnung & Flächen und Kurven im Raum –

- 15/1 Löse unter Verwendung der Regeln der Vektorrechnung
 - a) Vereinfache den Ausdruck $\vec{c}(\vec{a} \times (\vec{b} \times \vec{c})) + (\vec{c} \times \vec{a})(\vec{c} \times \vec{b})$
 - b) Zeige, dass Folgendes gilt: $(\vec{a} \times \vec{b})^2 + (\vec{a} \cdot \vec{b})^2 = a^2 b^2$
 - c) Zeige, dass die Vektoren \vec{a} und \vec{b} genau dann senkrecht aufeinanderstehen, wenn gilt: $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$
- 15/2 Welche Flächen werden mit folgenden Gleichungen beschrieben? $(k, a \text{ sind reele Konstanten}, \vec{e} \text{ ist ein Einheitsvektor})$

Hinweis: Tragen Sie jeweils in einer Skizze mehrere Ortsvektoren \vec{r} ein, die die angegebenen Bedingungen erfüllen.

- a) $|\vec{r} \times \vec{e}|^2 = k^2$
- b) $a\vec{r}^2 = 1$
- c) $|\vec{r} (\vec{r} \cdot \vec{e})\vec{e}| = k$
- d) $\vec{e} \cdot \vec{r} (\vec{e} \times \vec{r})^2 = 0$
- 15/3 Ein Punkt wird vom Ort \vec{r} zum Ort $\vec{r} + d\vec{r}$ verschoben. Welche Bewegung ergibt sich mit der Nebenbedingung an $d\vec{r}$? (Der Vektor \vec{n} ist ein beliebiger konstanter Vektor)
 - a) $d|\vec{r}| = 0$
 - b) $d(\vec{n} \cdot \vec{r}) = 0$
 - c) $d|\vec{r}| = d(\vec{n} \cdot \vec{r}) = 0$
- 15/4 Ein Punkt mit dem Ortsvektor \vec{r} soll so verschoben werden, dass er die angegebenen Bewegungen beschreibt. Wie lauten die zugehörigen Nebenbedingung? (Der Vektor \vec{n} ist ein beliebiger konstanter Vektor)
 - a) Bewegung auf Zylindermantel mit Achsenrichtung \vec{n}
 - b) Bewegung auf Geraden mit Richtung \vec{n}
 - c) Bewegung auf Kreislinie in der Ebene $\vec{n}\cdot\vec{r}$, die auch Element eines Zylindermantels ist.