Theoretische Physik I Mathematische Grundlagen

http://www.tu-chemnitz.de/physik/THUS/ de/lehre/MM1_SS14.php

Dr. P. Cain

cain@physik.tu-chemnitz.de Raum 2/P310, Telefon 531-33144

F. Günther

florian.guenther@s2008.tuchemnitz.de Raum 2/P312, Telefon 531-32334

Übung $6_{(11.06.2014)}$

– Komplexe Zahlen -

- 6/1 Bestimmen Sie jeweils den Realteil $\Re z$, den Imaginärteil $\Im z$, den Betrag |z|und das Argument arg z der folgenden komplexen Zahlen z_i . Stellen Sie die Zahlen in der komplexen Zahlenebene dar.
 - a) $z_1 = 1 + 1$
 - b) $z_2 = -\sqrt{3} + 1$
 - c) $z_3 = -41$
 - d) $z_4 = 2(\cos\frac{\pi}{6} i\sin\frac{\pi}{6})$
 - e) $z_5 = \sqrt{2}e^{i\pi/4}$
 - f) $z_6 = 2e^{i4\pi/3}$
- 6/2 Berechnen Sie jeweils Summe $z_1 + z_2$, Differenz $z_1 z_2$, Produkt $z_1 \cdot z_2$ und Quotient z_1/z_2 .
 - a) $z_1 = 1 + i\sqrt{3}$ $z_2 = 1 i$
- c) $z_1 = 1 + 2i$ $z_2 = 3 4i$
- b) $z_1 = \cos t + i \sin t$ $z_2 = i$ d) $z_1 = 2 + 3i$ $z_2 = 2 3i$
- 6/3 Zeigen Sie die Gültigkeit folgenden Aussagen
 - a) $(z_1 z_2)^* = z_1^* z_2^*$
 - $\dot{z}_1 \cdot z_2)^* = z_1^* \cdot z_2^*$
 - c) $(z_1/z_2)^* = z_1^*/z_2^*$
- 6/4 Bestimmen Sie den Real- und Imaginärteil von z.
 - a) $z = \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}\mathbf{1}\right)^6$
 - b) $z = \frac{\frac{5}{2} + \frac{1}{2}}{2 + \frac{1}{1}}$
 - c) $z = (\sqrt{3} + 1)^{-2}$
 - d) $z = \sqrt{-41}$
 - e) $z^8 = 256 (\cos 80^\circ + 1 \sin 80^\circ)$
 - f) $z = \sqrt[7]{1}$

- 6/5~Betrachten Sie die eulersche und trigonometrische Darstellung der komplexen Zahlen.
 - a) Verdeutlichen Sie die folgenden Zusammenhänge

$$\bullet \cos x = \frac{e^{1x} + e^{-1x}}{2}$$

$$\bullet \sin x = \frac{e^{1x} - e^{-1x}}{2i}$$

b) Verwenden Sie die Beziehungen und zeigen Sie:

$$(1): (\sin x)' = \cos x$$

$$(2): (\cos x)' = -\sin x$$

(3):
$$\cos^2 x + \sin^2 x = 1$$

(4):
$$\sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm \cos\alpha\sin\beta$$

(5):
$$\cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta$$

(6):
$$\sin 2\alpha = 2\sin \alpha \cos \alpha$$

(7):
$$\sin^2 \alpha = \frac{1}{2}(1 - \cos 2\alpha)$$