Theoretische Physik I Mathematische Grundlagen

http://www.tu-chemnitz.de/physik/THUS/ de/lehre/MM1_SS14.php

Dr. P. Cain

cain@physik.tu-chemnitz.de Raum 2/P310, Telefon 531-33144

F. Günther

florian.guenther@s2008.tuchemnitz.de Raum 2/P312, Telefon 531-32334

- 4/1 Gegeben ist die Funktion f(x,y). Bestimmen Sie die partiellen Ableitungen erster Ordnung $\frac{\partial}{\partial x}f$ und $\frac{\partial}{\partial y}f$ sowie die partiellen Ableitungen zweiter Ordnung $\frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} f \right)$, $\frac{\partial}{\partial y} \left(\frac{\partial}{\partial y} f \right)$, $\frac{\partial}{\partial y} \left(\frac{\partial}{\partial x} f \right)$ und $\frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} f \right)$.
 - a) $f(x,y) = x^2 + 2xy + y^2$ b) $f(x,y) = \sin x \cos y$
 - c) $f(x,y) = \sqrt{x^2 + y^2}$ d) $f(x,y) = \ln y e^{-x^2}$
 - e) $f(x,y) = \frac{\sin x}{y}$ f) $f(x,y) = y^x$
- 4/2 Gegeben sind die Vektoren $\vec{a} = \begin{pmatrix} -x^2 \\ xy^2z \\ -xyz^2 \end{pmatrix}$ und $\vec{b} = \begin{pmatrix} yz \\ -xz \\ xy \end{pmatrix}$.

Berechnen Sie die partiellen Ableitungen.

- a) $\frac{\partial}{\partial x}\vec{a}$
- b) $\frac{\partial}{\partial u}\vec{a}$
- c) $\frac{\partial}{\partial z}\vec{a}$

- f) $\frac{\partial}{\partial z}\vec{b}$
- d) $\frac{\partial}{\partial x}\vec{b}$ e) $\frac{\partial}{\partial y}\vec{b}$ g) $\frac{\partial}{\partial x}\left(\vec{a}\cdot\vec{b}\right)$ h) $\frac{\partial}{\partial y}\left(\vec{a}\cdot\vec{b}\right)$
- i) $\frac{\partial}{\partial z} \left(\vec{a} \cdot \vec{b} \right)$