Theoretische Physik I Mathematische Grundlagen

http://www.tu-chemnitz.de/physik/THUS/ de/lehre/MM1_SS14.php

Dr. P. Cain

cain@physik.tu-chemnitz.de Raum 2/P310, Telefon 531-33144

F. Günther

florian.guenther@s2008.tuchemnitz.de Raum 2/P312, Telefon 531-32334

Übung 2(07.05.2014)

- Ableitung von Umkehrfunktionen & Integration-

- 2/1 Bestimmen Sie die Ableitung der Umkehrfunktion $g(x) = f^{-1}(x)$ von folgenden Funktionen f(x).
 - a) $f(x) = x^2$

 $f: \mathbb{R}^+ \to \mathbb{R}^+$

b) $f(x) = \sin x$

 $f: (-\pi/2, \pi/2) \to [-1, 1]$

c) $f(x) = e^x$

 $f: \mathbb{R} \to \mathbb{R}^+$

d) $f(x) = \cos x$

 $f:[0,\pi]\to[-1,1]$

e) $f(x) = \tan x$

 $f: (-\pi/2, \pi/2) \to \mathbb{R}$

2/2 Bestimmen Sie die Stammfunktionen F(x) der angegebenen Funktionen f(x).

a)
$$f(x) = 5x^2$$

b)
$$f(x) = 3x^{-4}$$

a)
$$f(x) = 5x^2$$
 b) $f(x) = 3x^{-4}$ c) $f(x) = \frac{x^2 - 2x + 1}{5x}$

d)
$$f(x) = x^3 (2x + 1)$$
 e) $f(x) = \sqrt[4]{x}$ f) $f(x) = \sqrt[-3]{x^2}$

e)
$$f(x) = \sqrt[4]{x}$$

f)
$$f(x) = \sqrt[-3]{x^2}$$

$$g) f(x) = \frac{1}{x^3}$$

$$h) f(x) = \frac{4}{\sqrt{x}}$$

g)
$$f(x) = \frac{1}{x^3}$$
 h) $f(x) = \frac{4}{\sqrt{x}}$ i) $f(x) = \left(\frac{1}{\sqrt[6]{x}}\right)^7$

j)
$$f(x) = \frac{-3}{5x^{\frac{2}{3}}}$$

k)
$$f(x) = \frac{x^2 - 2}{\sqrt{x^3}}$$

j)
$$f(x) = \frac{-3}{5x^{\frac{2}{3}}}$$
 k) $f(x) = \frac{x^2 - 2}{\sqrt{x^3}}$ l) $f(x) = \frac{7x^{\frac{-2}{5}} - \sqrt{x}}{\sqrt{x^3}}$

m)
$$f(x) = (x^4 + 3x\sqrt{x} - 2 + \frac{4}{x^2})$$

2/3 Lösen Sie die folgenden Integrale unter Verwendung einer linearen Substitution. Hinweis: Bringen Sie die angegeben Ausdrücke erst in die entsprechende Form.

a)
$$\int \sin(3x) dx$$

b)
$$\int \frac{5}{7-3x} \, \mathrm{d}x$$

a)
$$\int \sin(3x) dx$$
 b) $\int \frac{5}{7-3x} dx$ c) $\int \frac{x^2 + 2x - 1}{x+1} dx$

$$d) \int \frac{x}{x^2 + 2x + 1} \, dx$$

d)
$$\int \frac{x}{x^2 + 2x + 1} dx$$
 e) $\int \frac{1}{\sqrt{-x(1+x)}} dx$ f) $\int 7e^{\frac{x}{2}+3} dx$

f)
$$\int 7e^{\frac{x}{2}+3} dx$$

g)
$$\int \tan \frac{x}{2} dx$$

$$h) \int \frac{1}{x^2 - 1} \, \mathrm{d}x$$

g)
$$\int \tan \frac{x}{2} dx$$
 h) $\int \frac{1}{x^2 - 1} dx$ i) $\int \frac{1}{x^2 - 2x + 2} dx$

j)
$$\int \frac{x^5 - 3x^4 + 5x^3 - 7x^2 + 9x - 4}{x - 1} \, \mathrm{d}x$$

2/4 Lösen Sie die folgenden Integrale mittels partieller Integration.

a)
$$\int x^3 (2x+1) dx$$
 b) $\int \ln x dx$

b)
$$\int \ln x \, dx$$

c)
$$\int \sin^2 x \, \mathrm{d}x$$

d)
$$\int \frac{1}{\sqrt{x}} (x^2 + 1) dx$$
 e) $\int \arctan x dx$ f) $\int \cos^2 x dx$

e)
$$\int \arctan x \, dx$$

f)
$$\int \cos^2 x \, \mathrm{d}x$$

g)
$$\int x \sin x \, dx$$

h)
$$\int x \ln x \, dx$$

g)
$$\int x \sin x \, dx$$
 h) $\int x \ln x \, dx$ i) $\int \sqrt{x} (\ln x)^2 \, dx$

$$j) \int (\ln x)^2 dx$$

k)
$$\int \sin x \, e^x \, dx$$

2/5 Lösen Sie die folgenden Integrale mit einer geeigneten Substitution.

a)
$$\int x e^{-\frac{x^2}{2}} dx$$
 b) $\int \frac{x}{x^2 - 3} dx$ c) $\int \tan x dx$

b)
$$\int \frac{x}{x^2-3} dx$$

c)
$$\int \tan x \, dx$$

$$d) \int \cos x \sin^3 x \, dx$$

d)
$$\int \cos x \sin^3 x \, dx$$
 e) $\int x^{-2} \sin \left(x^{-1}\right) \, dx$ f) $\int \frac{4x}{x^2 + 3} \, dx$

f)
$$\int \frac{4x}{x^2+3} \, \mathrm{d}x$$

g)
$$\int \cot x \, \mathrm{d}x$$

h)
$$\int x \left(x^2 + 4\right) \, \mathrm{d}x$$

g)
$$\int \cot x \, dx$$
 h) $\int x \left(x^2 + 4\right) \, dx$ i) $\int \left(3x^2 + 1\right) \left(x^3 + x - 4\right) \, dx$

j)
$$\int x^2 \sin\left(\frac{x^3}{3}\right) dx$$
 k) $\int \frac{1}{x} \cos(\ln x) dx$ l) $\int \frac{1}{x} (\ln x + 1) dx$

$$k) \int \frac{1}{x} \cos(\ln x) \, dx$$

$$1) \int \frac{1}{x} (\ln x + 1) dx$$

2/6 Lösen Sie die folgenden bestimmten Integrale.

a)
$$\int_1^4 \frac{1}{\sqrt{x}} \, \mathrm{d}x$$

a)
$$\int_{1}^{4} \frac{1}{\sqrt{x}} dx$$
 b) $\int_{-\pi/2}^{\pi/2} \cos x dx$ c) $\int_{0}^{x} y^{3} e^{-y^{2}} dy$

c)
$$\int_0^x y^3 e^{-y^2} dy$$

d)
$$\int_{3}^{4} \frac{x^2}{x^3 - 13} \, \mathrm{d}x$$

d)
$$\int_{2}^{4} \frac{x^{2}}{x^{3} - 13} dx$$
 e) $\int_{0}^{\infty} x^{N} e^{-x} dx$, $N \in \mathbb{N}$ f) $\int_{1}^{a} x^{m} \ln x dx$

$$f) \int_{1}^{a} x^{m} \ln x \, dx$$

2/7 Bestimmen Sie eine Stammfunktion F(x) für die Funktionen f(x) mittels Differenzieren nach der Konstanten.

a)
$$f(x) = x \cos(\alpha x)$$
 b) $f(x) = x \sin(\alpha x)$ c) $f(x) = x^2 \cdot e^{-\alpha x}$

b)
$$f(x) = x \sin(\alpha x)$$

c)
$$f(x) = x^2 \cdot e^{-\alpha x}$$