Theoretische Physik I Mathematische Grundlagen

http://www.tu-chemnitz.de/physik/THUS/ lehre/MM1_SS13.php

Dr. P. Cain

cain@physik.tu-chemnitz.de Raum 2/P310, Telefon 531-33144

F. Günther

florian.guenther@s2008.tuchemnitz.de Raum 2/P312, Telefon 531-32334

Übung 5(30.05.2013)

-Taylorreihen, Partielle Ableitungen, Fehlerrechnung & Verteilungsfunktionen-

5/1 Entwickeln Sie folgende Funktionen an der Stelle x_0 in eine Taylorreihe bis zum Glied.

a)
$$f(x) = \arctan x$$
 $x_0 = 0$

b)
$$f(x) = \ln\left(\frac{2+x}{-x}\right)$$
 $x_0 = -1$

5/2 Gegeben ist die Funktion f(x, y).

Bestimmen Sie jeweils $\frac{\partial}{\partial x}f$, $\frac{\partial}{\partial y}f$, $\frac{\partial}{\partial y}\left(\frac{\partial}{\partial x}f\right)$ und $\frac{\partial}{\partial x}\left(\frac{\partial}{\partial u}f\right)$.

a)
$$f(x,y) = \sqrt{x^2 + y^2}$$

b)
$$f(x,y) = \frac{\sin x}{y}$$

5/3 Gegeben sind die Vektoren

$$\vec{a} = \begin{pmatrix} -x^2 \\ xy^2z \\ -xyz^2 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} yz \\ -xz \\ xy \end{pmatrix}$$
 Berechnen Sie die partiellen Ableitungen.

a)
$$\frac{\partial}{\partial x}\vec{a}$$

b)
$$\frac{\partial}{\partial y}\bar{a}$$

c)
$$\frac{\partial}{\partial z}\vec{a}$$

d)
$$\frac{\partial}{\partial x}\vec{b}$$

e)
$$\frac{\partial}{\partial u}\vec{b}$$

f)
$$\frac{\partial}{\partial z}\vec{b}$$

a)
$$\frac{\partial}{\partial x}\vec{a}$$
 b) $\frac{\partial}{\partial y}\vec{a}$ c) $\frac{\partial}{\partial z}\vec{a}$ d) $\frac{\partial}{\partial x}\vec{b}$ e) $\frac{\partial}{\partial y}\vec{b}$ f) $\frac{\partial}{\partial z}\vec{b}$ g) $\frac{\partial}{\partial x}\left(\vec{a}\vec{b}\right)$ h) $\frac{\partial}{\partial y}\left(\vec{a}\vec{b}\right)$ i) $\frac{\partial}{\partial z}\left(\vec{a}\vec{b}\right)$

h)
$$\frac{\partial}{\partial x} \left(\vec{a} \vec{b} \right)$$

i)
$$\frac{\partial}{\partial z} \left(\vec{a} \vec{b} \right)$$

5/4 Leiten Sie die Fehlerformeln für folgende Formeln her

a)
$$\rho = \frac{m}{\pi h(R_a^2 - R_i^2)}$$

b)
$$N_A = \frac{1}{2} \cdot \frac{M}{\rho \cdot d^3}$$

a)
$$\rho = \frac{m}{\pi h(R_a^2 - R_i^2)}$$
 b) $N_A = \frac{1}{2} \cdot \frac{M}{\rho \cdot d^3}$ c) $\eta = \frac{2(\sigma_K - \sigma_{Fl}) \cdot g^4 \cdot t}{9l}$ d) $c_S = \frac{2N\lambda_c fs}{x}$

$$d) c_S = \frac{2N\lambda_c f s}{r}$$

- 5/5 Berechnen Sie für die Verteilungen die Normierung, den Erwartungswert und die Varianz:
 - Poissonverteilung: $P(k) = \frac{\lambda^k}{k!} e^{-\lambda}$ $k \in \mathbb{N}$
 - Binomialverteilung: $B(k) = \binom{n}{k} p^k (1-p)^k \quad k \in \mathbb{N}, k \leq n$
 - Exponential verteilung: $p(x) = \lambda e^{-\lambda x}$ $x \in \mathbb{R}^+$

- 5/6 Bestimmen Sie für die folgenden Zufallszahlen x den Erwartungswert μ und die Varianz σ^2 .
 - a) Zwei Würfel werden gleichzeitig geworfen; x ist die Differenz der beiden Zahlen.
 - b) Eine Münze wird mehrmals geworfen; x ist die Anzahl der Würfe bis das erste Mal Kopf erscheint.
 - c) Von einem gemischten Skatblatt werden zufällig zwei Karten gezogen; x ist die Summe der Punkte beider Karten.
 - (7,8,9–keine Punkte; Bube–2 Punkte; Dame–3 Punkte; König–4 Punkte; 10–10 Punkte; Ass–11 Punkte)
- 5/7 Die Brennweite f einer dünnen Linse soll durch Messen (siehe Abbildung) von Gegenstandsweite a und Bildweite a^* mit Hilfe der Linsengleichung bestimmt werden:

$$\frac{1}{f} = \frac{1}{a} + \frac{1}{a^*}.$$

Bestimmen Sie den Größtfehler in Abhängigkeit von den Fehlern Δa und $\Delta a*$. Wie ändert sich die Fehlerformel, wenn a und a* nicht direkt sondern über Gegenstandsort l_1 , Linsenort l_2 und Bildort l_3 ermittelt werden?

