Theoretische Physik I: Mathematische Grundlagen

http://www.tu-chemnitz.de/physik/THUS/de/lehre/MM1_WS1516.php

Dr. Philipp Cain

cain@physik.tu-chemnitz.de Raum 2/P310, Telefon 531-33144 Fabian Teichert

fabian.teichert@physik.tu-chemnitz.de Raum 2/W449, Telefon 531-32314

 $\dot{ ext{U}} ext{bung} \ 3$

– Integration –

3/1 Bestimmen Sie die Stammfunktionen F(x) der angegebenen Funktionen f(x).

a)
$$f(x) = 5x^2$$

b)
$$f(x) = 3x^{-4}$$

a)
$$f(x) = 5x^2$$
 b) $f(x) = 3x^{-4}$ c) $f(x) = \frac{x^2 - 2x + 1}{5x}$ d) $f(x) = x^3(2x + 1)$ e) $f(x) = \sqrt[4]{x}$ f) $f(x) = -\sqrt[3]{x^2}$

d)
$$f(x) = x^3(2x+1)$$

e)
$$f(x) = \sqrt[4]{x}$$

f)
$$f(x) = \sqrt[-3]{x^2}$$

$$g) f(x) = \frac{1}{x^3}$$

$$f(x) = \frac{4}{\sqrt{x}}$$

g)
$$f(x) = \frac{1}{x^3}$$
 h) $f(x) = \frac{4}{\sqrt{x}}$ i) $f(x) = \left(\frac{1}{\sqrt[6]{x}}\right)^7$

j)
$$f(x) = \frac{-3}{5x^{2/3}}$$

k)
$$f(x) = \frac{x^2 - 2}{\sqrt{x^3}}$$

j)
$$f(x) = \frac{-3}{5x^{2/3}}$$
 k) $f(x) = \frac{x^2 - 2}{\sqrt{x^3}}$ l) $f(x) = \frac{7x^{-2/5} - \sqrt{x}}{\sqrt{x^3}}$

m)
$$f(x) = x^4 + 3x\sqrt{x} - 2 + \frac{4}{x^2}$$

3/2 Lösen Sie die folgenden Integrale unter Verwendung einer linearen Substitution. Hinweis: Bringen Sie die angegeben Ausdrücke erst in eine geeignete Form.

a)
$$\int \sin(3x) \, \mathrm{d}x$$

b)
$$\int \frac{5}{7 - 3x} \, \mathrm{d}x$$

a)
$$\int \sin(3x) dx$$
 b) $\int \frac{5}{7-3x} dx$ c) $\int \frac{x^2 + 2x - 1}{x+1} dx$

$$d) \int \frac{x}{x^2 + 2x + 1} \, dx$$

d)
$$\int \frac{x}{x^2 + 2x + 1} dx$$
 e) $\int \frac{1}{\sqrt{-x(1+x)}} dx$ f) $\int 7e^{\frac{x}{2}+3} dx$

$$f) \int 7e^{\frac{x}{2}+3} dx$$

$$g) \int \frac{1}{x^2 - 1} \, \mathrm{d}x$$

g)
$$\int \frac{1}{x^2 - 1} dx$$
 h) $\int \frac{1}{x^2 - 2x + 2} dx$

i)
$$\int \frac{x^5 - 3x^4 + 5x^3 - 7x^2 + 9x - 4}{x - 1} \, \mathrm{d}x$$

3/3 Lösen Sie die folgenden Integrale mit einer geeigneten Substitution.

a)
$$\int x e^{-\frac{1}{2}x^2} dx$$
 b) $\int \frac{x}{x^2 - 3} dx$ c) $\int \tan \frac{x}{2} dx$

b)
$$\int \frac{x}{x^2 - 3} \, \mathrm{d}x$$

c)
$$\int \tan \frac{x}{2} dx$$

d)
$$\int \cos x \sin^3 x \, dx$$

d)
$$\int \cos x \sin^3 x \, dx$$
 e) $\int x^{-2} \sin(x^{-1}) \, dx$ f) $\int \frac{4x}{x^2 + 3} \, dx$

f)
$$\int \frac{4x}{x^2 + 3} \, \mathrm{d}x$$

g)
$$\int \cot x \, dx$$

h)
$$\int x \left(x^2 + 4\right) dx$$

g)
$$\int \cot x \, dx$$
 h) $\int x \left(x^2 + 4\right) dx$ i) $\int \left(3x^2 + 1\right) \left(x^3 + x - 4\right) dx$

j)
$$\int x^2 \sin\left(\frac{x^3}{3}\right) dx$$
 k) $\int \frac{1}{x} \cos(\ln x) dx$ l) $\int \frac{1}{x} (\ln x + 1) dx$

k)
$$\int \frac{1}{x} \cos(\ln x) \, dx$$

$$1) \int \frac{1}{x} (\ln x + 1) \, \mathrm{d}x$$

3/4 Lösen Sie die folgenden Integrale mittels partieller Integration.

a)
$$\int x^3(2x+1) \, \mathrm{d}x$$

b)
$$\int \ln x \, dx$$

c)
$$\int \sin^2 x \, dx$$

a)
$$\int x^3(2x+1) dx$$
 b) $\int \ln x dx$ c) $\int \sin^2 x dx$
d) $\int \frac{1}{\sqrt{x}} (x^2+1) dx$ e) $\int \arctan x dx$ f) $\int \cos^2 x dx$
g) $\int x \sin x dx$ h) $\int x \ln x dx$ i) $\int \sqrt{x} (\ln x)^2 dx$

e)
$$\int \arctan x \, dx$$

f)
$$\int \cos^2 x \, dx$$

g)
$$\int x \sin x \, dx$$

h)
$$\int x \ln x \, dx$$

i)
$$\int \sqrt{x} (\ln x)^2 dx$$

$$j) \quad \int (\ln x)^2 \, \mathrm{d}x$$

j)
$$\int (\ln x)^2 dx$$
 k) $\int \sin x e^x dx$

3/5 Bestimmen Sie eine Stammfunktion F(x) für die Funktionen f(x) mittels Differenzieren nach der Konstanten.

a)
$$f(x) = x \cos(\alpha x)$$

b)
$$f(x) = x \sin(\alpha x)$$
 c) $f(x) = x^2 e^{-\alpha x}$

c)
$$f(x) = x^2 e^{-\alpha x}$$

3/6 Mit welchen Methoden kann die Stammfunktion F(x) für die Funktionen f(x) bestimmt werden? Mit welcher Mothode ist der Aufwand am geringsten? Bestimmen Sie F(x).

a)
$$f(x) = x^4 e^x$$

b)
$$f(x) = \sin x \cos x$$

b)
$$f(x) = \sin x \cos x$$
 c) $f(x) = x \frac{x+2}{x^3 + 3x^2 + 2}$

3/7 Gegeben seien die folgenden Integrale.

$$I_1 = \int \frac{x+1}{f_1(x)} \, \mathrm{d}x$$

$$f_1(x) \nsim (x+1)$$

$$I_2 = \int f_2(x) \sin x \, \mathrm{d}x$$

$$f_2(x) \nsim \frac{1}{\sin x}$$

Finden Sie je eine Funktion $f_{1/2}(x)$, für die $I_{1/2}$

- a) elementar
- b) mittels Substitution, aber nicht elementar oder partiell
- c) partiell, aber nicht elementar oder mittels Substitution
- d) sowohl mittels Substitution als auch partiell, aber nicht elementar integrierbar ist. Lösen Sie das Integral für Ihr gewähltes Beispiel.

3/8 Lösen Sie die folgenden bestimmten Integrale.

a)
$$\int_{1}^{4} \frac{1}{\sqrt{x}} \, \mathrm{d}x$$

a)
$$\int_{1}^{4} \frac{1}{\sqrt{x}} dx$$
 b) $\int_{-\pi/2}^{\pi/2} \cos x dx$ c) $\int_{0}^{x} y^{3} e^{-y^{2}} dy$

c)
$$\int_0^x y^3 e^{-y^2} dy$$

d)
$$\int_3^4 \frac{x^2}{x^3 - 13} \, \mathrm{d}x$$

e)
$$\int_{0}^{\infty} x^{n} e^{-x} dx, n \in \mathbb{N}$$

d)
$$\int_{3}^{4} \frac{x^{2}}{x^{3} - 13} dx$$
 e) $\int_{0}^{\infty} x^{n} e^{-x} dx$, $n \in \mathbb{N}$ f) $\int_{1}^{a} x^{m} \ln x dx$, $a > 0$

3/9 Führen Sie für die Funktionen f(x) eine Partialbruchzerlegung durch. Bestimmen Sie anschließend die Stammfunktion F(x).

a)
$$f(x) = \frac{3x+2}{x^2+x}$$

a)
$$f(x) = \frac{3x+2}{x^2+x}$$
 b) $f(x) = \frac{x^2}{(x-1)(x-2)^2}$ c) $f(x) = \frac{3x^2+2x+3}{x^3+x}$

c)
$$f(x) = \frac{3x^2 + 2x + 3}{x^3 + x}$$