Theoretische Physik I: Mathematische Grundlagen

http://www.tu-chemnitz.de/physik/THUS/de/lehre/MM1_WS1516.php

Dr. Philipp Cain

cain@physik.tu-chemnitz.de Raum 2/P310, Telefon 531-33144 Fabian Teichert

fabian.teichert@physik.tu-chemnitz.de Raum 2/W449, Telefon 531-32314

 $\ddot{ ext{U}}$ bung $oldsymbol{2}$

– Taylorreihen –

2/1 Bestimmen Sie die vollständige Taylorreihe für die gegebenen Funktionen f(x) an der Stelle $x_0 = 0$.

$$a) f(x) = \frac{1}{1-x}$$

b)
$$f(x) = \frac{1}{\sqrt{1-x}}$$

c)
$$f(x) = e^x$$

$$d) f(x) = \sin x$$

e)
$$f(x) = \ln(1 - x)$$

f)
$$f(x) = \cosh x = \frac{e^x + e^{-x}}{2}$$

2/2 Bestimmen Sie die Taylorreihe bis zur n. Ordnung für die gegebenen Funktionen f(x) an der Stelle $x_0 = 0$.

a)
$$f(x) = \sin(x^2)$$

$$n = 6$$

$$f(x) = 2x\cos(x^2)$$

c)
$$f(x) = \frac{1}{1+x^2}$$

a)
$$f(x) = \sin(x^2)$$
 $n = 6$ b) $f(x) = 2x\cos(x^2)$ $n = 5$ c) $f(x) = \frac{1}{1+x^2}$ $n = 2$ d) $f(x) = \ln\left(\frac{1-x}{1+x}\right)$ $n = 3$

2/3 Bestimmen Sie die vollständige Taylorreihe für die Funktionen f(x) aus den Aufgaben 1f und 2 mittels bekannter Taylorreihen.

2/4 Entwickeln Sie folgende Funktionen an der Stelle x_0 in eine Taylorreihe bis zum 5. Glied.

a)
$$f(x) = \sqrt{x}$$

$$x_0 = 1$$

b)
$$f(x) = e^x$$

$$r_0 = 2$$

c)
$$f(x) = \ln x$$

$$x_0 = 1$$

d)
$$f(x) = \sin x$$

$$x_0 = \tau$$

a)
$$f(x) = \sqrt{x}$$
 $x_0 = 1$ b) $f(x) = e^x$ $x_0 = 2$
c) $f(x) = \ln x$ $x_0 = 1$ d) $f(x) = \sin x$ $x_0 = \pi$
e) $f(x) = \ln\left(\frac{2+x}{-x}\right)$ $x_0 = -1$ f) $f(x) = e^x \sin x$ $x_0 = \frac{\pi}{2}$

$$f) \quad f(x) = e^x \sin x$$

$$x_0 = \frac{\pi}{2}$$

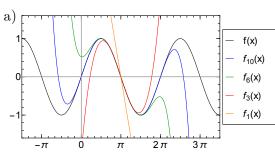
g)
$$f(x) = \tan x$$

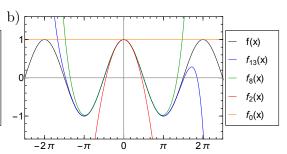
$$x_0 = 0$$

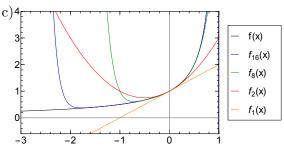
2/5 Entwickeln Sie die Funktionen f(x) aus den Aufgaben 4b, 4c, 4d und 4e mittels bekannter Taylorreihen an der Stelle x_0 in eine Taylorreihe bis zum 5. Glied.

2/6 Zeichnen Sie die Funktion $f(x) = e^x$ und die zugehörigen Taylorpolynome im Punkt $x_0 = 0$ bis zur 3. Ordnung.

2/7 In den folgenden Diagrammen sind Funktionen f(x) und Näherungen $f_i(x)$ gegeben. Kann es sich bei den Funktionen $f_i(x)$ um Taylorpolynome i-ter Ordnung von f(x)handeln? Begründen Sie.







2/8 Nutzen Sie die Reihenentwicklung zum Bestimmen folgender Grenzwerte.

a)
$$\lim_{x \to 0} \frac{\sin x}{x}$$

b)
$$\lim_{x \to 0} \frac{\frac{1}{2}x^2 + \cos x - 1}{x^4}$$
 c) $\lim_{x \to 0} \frac{e^x - 1}{x}$

c)
$$\lim_{x \to 0} \frac{e^x - 1}{x}$$

2/9 Das bestimmte Integral

$$I = \int_{-1}^{1} e^{-\frac{1}{2}x^2} \, \mathrm{d}x$$

lässt sich analytisch nicht lösen. Bestimmen Sie unter Betrachtung der Taylorreihe eine Gleichung, mit der I numerisch bestimmt werden kann.