Computational Science 1

http://www.tu-chemnitz.de/physik/THUS/de/ lehre/CSM_WS1617.php

Seminar
 Exercises

Prof. M. Schreiber

schreiber@physik.tu-chemnitz.de
Room 2/P302, Phone 21910
Dr. P. Cain
cain@physik.tu-chemnitz.de
Room 2/P310, Phone 33144

Exercise 4 (24.11.2016):

The fixed points of the logistic map from An Introduction to Computer Simulation Methods, Chapter 6, Problem 6.4

a) Use GraphicalSolutionApp (see sample codes of Chapter 6) to show graphically that there is a single stable fixed point of $f(x)$ for $r<3 / 4$. It would be instructive to modify the program so that the value of the slope $\left.(d f / d x)\right|_{x=x_{n}}$ is shown as you step each iteration. At what value of r does the absolute value of this slope exceed unity? Let b_{1} denote the value of r at which the fixed point of $f(x)$ bifurcates and becomes unstable. Verify that $b_{1}=0.75$.
b) Describe the trajectory of $f(x)$ for $r=0.785$. Is the fixed point given by $x^{*}=1-1 / 4 r$ stable or unstable? What is the nature of the trajectory if $x_{0}=1-1 / 4 r$? What is the period of $f(x)$ for all other choices of x_{0} ? What are the values of the two-point attractor?
c) The function $f(x)$ is symmetrical about $x=1 / 2$ where $f(x)$ is a maximum. What are the qualitative features of the second iterate $f^{(2)}(x)$ for $r=0.785$? Is $f^{(2)}(x)$ symmetrical about $x=1 / 2$? For what value of x does $f^{(2)}(x)$ have a minimum? Iterate $x_{n+1}=f^{(2)}\left(x_{n}\right)$ for $r=0.785$ and find its two fixed points x_{1}^{*} and x_{2}^{*}. (Try $x_{0}=0.1$ and $x_{0}=0.3$.) Are the fixed points of $f^{(2)}(x)$ stable or unstable for this value of r ? How do these values of x_{1}^{*} and x_{2}^{*} compare with the values of the two-point attractor of $f(x)$? Verify that the slopes of $f^{(2)}(x)$ at x_{1}^{*} and x_{2}^{*} are equal.
d) Verify the following properties of the fixed points of $f^{(2)}(x)$. As r is increased, the fixed points of $f^{(2)}(x)$ move apart and the slope of $f^{(2)}(x)$ at its fixed points decreases. What is the value of $r=s_{2}$ at which one of the two fixed points of $f^{(2)}$ equals $1 / 2$? What is the value of the other fixed point? What is the slope of $f^{(2)}(x)$ at $x=1 / 2$? What is the slope at the other fixed point? As r is further increased, the slopes at the fixed points become negative. Finally at $r=b_{2} \approx 0.8623$, the slopes at the two fixed points of $f^{(2)}(x)$ equal -1 , and the two fixed points of $f^{(2)}$ become unstable. (The exact value of b_{2} is $b_{2}=(1+\sqrt{6}) / 4$.)
e) Show that for r slightly greater than b_{2}, for example, $r=0.87$, there are four stable fixed points of $f^{(4)}(x)$. What is the value of $r=s_{3}$ when one of the fixed points equals $1 / 2$? What are the values of the three other fixed points at $r=s_{3}$?
f) Determine the value of $r=b_{3}$ at which the four fixed points of $f^{(4)}$ become unstable.
g) Choose $r=s_{3}$ and determine the number of iterations that are necessary for the trajectory to converge to period 4 behavior. How does this number of iterations change when neighboring values of r are considered? Choose several values of x_{0} so that your results do not depend on the initial conditions.

