Computational Science 1

http://www.tu-chemnitz.de/physik/THUS/de/lehre/CSM_WS1314.php

Seminar Exercises Prof. M. Schreiber

schreiber@physik.tu-chemnitz.de Room 2/P302, Phone 21910

Dr. P. Cain

cain@physik.tu-chemnitz.de Room 2/P310, Phone 33144

Exercise 7 (9.1.2014):

Statistical test of randomness

from An Introduction to Computer Simulation Methods, Chapter 7, Problem 7.35

A rather simple but very fast random number generator can be constructed with the linear congruential method $x_n = (ax_{n-1} + c) \mod m$, where a, c, m, and x_n are integers. The random numbers take values between 0 to m and should be divided by m to fit into the interval [0, 1).

- a) Uniformity. A random number sequence should contain numbers distributed in the unit interval with equal probability. The simplest test of uniformity is to divide this interval into M equal size bins. For example, consider the first $N = 10^4$ numbers generated with a = 106, c = 1283, and m = 6075. Place each number into one of M = 100 bins. Is the number n_i of entries in each bin approximately equal? What happens if you increase N? Plot the distribution of the n_i 's for different N and M.
- b) Filling sites. Although a random number sequence might be distributed in the unit interval with equal probability, the consecutive numbers might be correlated in some way. One test of this correlation is to fill a square lattice of L^2 sites at random. Consider an array n(x, y) that is initially empty, where $1 \le x_i, y_i \le L$. A site is selected randomly by choosing its two coordinates x_i and y_i from two consecutive numbers in the sequence. If the site is empty, it is filled and $n(x_i, y_i) = 1$; otherwise it is not changed. This procedure is repeated t times, where t is the number of Monte Carlo steps per site. That is, the time is increased by $1/L^2$ each time a pair of random numbers is generated. Because this process is analogous to the decay of radioactive nuclei, we expect that the fraction of empty lattice sites should decay as e^{-t} . Determine the fraction of unfilled sites using the random number generator that you have been using for L = 10, 15, and 20. Are your results consistent with the expected fraction? Repeat the same test with a = 65539, c = 0, and $m = 2^{31}$.
- c) **Hidden correlations**. Another way of checking for correlations is to plot x_{i+k} versus x_i . If there are any obvious patterns in the plot, then there is something wrong with the generator. Use a = 16807, c = 0, and $m = 2^{31} 1$. Can you detect any structure in the plotted points for k = 1 to k = 5?
- d) **Short-term correlations**. Another measure of short term correlations is the autocorrelation function

$$C(k) = \frac{\langle x_{i+k} x_i \rangle - \langle x_i \rangle^2}{\langle x_i^2 \rangle - \langle x_i \rangle^2},\tag{1}$$

where x_i is the *i*th term in the sequence. If x_{i+k} and x_i are not correlated, then $\langle x_{i+k} x_i \rangle = \langle x_{i+k} \rangle \langle x_i \rangle$ and C(k) = 0. Is C(k) identically zero for any finite sequence? Compute C(k) for a = 106, c = 1283, and m = 6075.