Computational Science 1

http://www.tu-chemnitz.de/physik/THUS/de/ lehre/CSM_WS1920.php

Seminar
Exercises

Prof. M. Schreiber
schreiber@physik.tu-chemnitz.de
Room 2/P302, Phone 21910
Dr. P. Cain
cain@physik.tu-chemnitz.de
Room 2/P310, Phone 33144

Exercise 5 (5.12.2019):

Statistical test of randomness

from An Introduction to Computer Simulation Methods,
Chapter 7, Problem 7.35
A rather simple but very fast random number generator can be constructed with the linear congruential method $x_{n}=\left(a x_{n-1}+c\right) \bmod m$, where a, c, m, and x_{n} are integers. The random numbers take values between 0 to m and should be divided by m to fit into the interval $[0,1)$.
a) Uniformity. A random number sequence should contain numbers distributed in the unit interval with equal probability. The simplest test of uniformity is to divide this interval into M equal size bins. For example, consider the first $N=10^{4}$ numbers generated with $a=106, c=1283$, and $m=6075$. Place each number into one of $M=100$ bins. Is the number n_{i} of entries in each bin approximately equal? What happens if you increase N ? Plot the distribution of the n_{i} 's for different N and M.
b) Filling sites. Although a random number sequence might be distributed in the unit interval with equal probability, the consecutive numbers might be correlated in some way. One test of this correlation is to fill a square lattice of L^{2} sites at random. Consider an array $n(x, y)$ that is initially empty, where $1 \leq x_{i}, y_{i} \leq L$. A site is selected randomly by choosing its two coordinates x_{i} and y_{i} from two consecutive numbers in the sequence. If the site is empty, it is filled and $n\left(x_{i}, y_{i}\right)=1$; otherwise it is not changed. This procedure is repeated t times, where t is the number of Monte Carlo steps per site. That is, the time is increased by $1 / L^{2}$ each time a pair of random numbers is generated. Because this process is analogous to the decay of radioactive nuclei, we expect that the fraction of empty lattice sites should decay as e^{-t}. Determine the fraction of unfilled sites using the random number generator that you have been using for $L=10,15$, and 20 . Are your results consistent with the expected fraction? Repeat the same test with $a=65539, c=0$, and $m=2^{31}$.
c) Hidden correlations. Another way of checking for correlations is to plot x_{i+k} versus x_{i}. If there are any obvious patterns in the plot, then there is something wrong with the generator. Use $a=16807, c=0$, and $m=2^{31}-1$. Can you detect any structure in the plotted points for $k=1$ to $k=5$?
d) Short-term correlations. Another measure of short term correlations is the autocorrelation function

$$
\begin{equation*}
C(k)=\frac{\left\langle x_{i+k} x_{i}\right\rangle-\left\langle x_{i}\right\rangle^{2}}{\left\langle x_{i}^{2}\right\rangle-\left\langle x_{i}\right\rangle^{2}} \tag{1}
\end{equation*}
$$

where x_{i} is the i th term in the sequence. If x_{i+k} and x_{i} are not correlated, then $\left\langle x_{i+k} x_{i}\right\rangle=\left\langle x_{i+k}\right\rangle\left\langle x_{i}\right\rangle$ and $C(k)=0$. Is $C(k)$ identically zero for any finite sequence? Compute $C(k)$ for $a=106, c=1283$, and $m=6075$.

