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1.2

Aufgabenstellung

Stellen Sie eine freie schwach gedampfte Schwingung eines
Reihenschwingkreises dar. Bei gegebener Kapazitat C soll die Induktivitat L
und der Ohm’sche Widerstand R; der Spule bestimmt werden. Untersuchen

Sie weiterhin den Einfluss eines Dampfungswiderstandes R auf das
Schwingungsverhalten.

Nehmen Sie fur verschiedene Dampfungen die Spannungs- und die
Phasen-Resonanzkurve eines Reihenschwingkreises in Abhangigkeit von der
Frequenz auf, und bestimmen Sie die zugehtrige Resonanzfrequenz, die
Schwingkreisgite und die Bandbreite.

Theoretische Grundlagen

Stichworte zur Vorbereitung:

WechselstromgroRen, komplexe Widerstande, ungedampfte, gedampfte und
erzwungene Schwingungen, Eigenfrequenz, Resonanzfrequenz, Reihen- und
Parallelschwingkreis, Schwingkreisgute, Dampfungsfaktor, Bandbreite
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Schwingungen treten in der Physik und in technischen Gebilden haufig auf. Es
handelt sich dabei um periodische Veranderungen physikalischer Gréf3en, wie z. B.
Weg (X), Drehwinkel (@), Ladung (Q), Strom (I) oder Spannung (U), um nur einige
zu nennen. Konnen diese periodischen Veranderungen durch eine Sinus- bzw.
Cosinus-Funktion beschrieben werden, werden sie als harmonische Schwingungen
der jeweiligen physikalischen Grol3e bezeichnet. Beispiele dafir sind
Federschwinger, Drehschwinger oder der elektrische Reihenschwingkreis.

2.1  Freie Schwingungen

Die physikalischen GesetzmaRigkeiten, die charakteristisch fur eine freie
Schwingung sind, sollen hier am Beispiel eines LC-Schwingkreises dargestellt
werden. Ladt man einen Kondensator C auf die Spannung Uy und entladt ihn Gber
eine parallel geschaltete Spule, so missen zu jeder Zeit die Spannungen am
Kondensator und der Spule gleich grof3 sein:

—Li=Q/C. (1)

Um Q zu eliminieren ist die zeitliche Ableitung von GI.(1) zu bilden, diese ergibt die
Differentialgleichung

Li+1/C=0. (2)

Sie hat genau die gleiche Struktur wie die Schwingungsgleichung fir einen
mechanischen harmonischen Oszillator. Analog ergibt sich fir den Strom auch eine
harmonische Schwingung

Lty=1,-e“" . 3)

mit der Eigenfrequenz

1
C{)O —ﬁ . (4)

Nach dem Ohm’schen Gesetz gilt gleiches fur die Spannung. Die Parallelschaltung
von Spule und Kondensator wird deshalb als elektrischer Schwingkreis bezeichnet.
Genau wie beim mechanischen Oszillator tritt auch beim elektrischen Schwingkreis
unvermeidlich eine Dampfung auf, hier verursacht durch den Ohm’schen Widerstand

R der Leitungen. Dieser wirkt, als ob er in Reihe zu den anderen Bauelementen

geschaltet ist. In GI. (1) ist nun zusatzlich der Spannungsabfall an R zu berlick-
sichtigen, und man erhalt



~LI=Q/C+RI1I . (5)

Die zeitliche Ableitung von GI. (5) fuhrt wieder zu einer homogenen Differential-
gleichung der Struktur

I +251+w; 1=0 (6)
wobei
R
o=—ov 7
L (7)

der Dampfungsfaktor des elektrischen Schwingkreises ist.
In Analogie zur Mechanik ergeben sich auch hier in Abhangigkeit vom Vorzeichen

der Differenz 5° — @, die charakteristischen Lésungen

- Schwingfall o<w
- Grenzfall o=w
- Kriechfall o>w

fur die Differentialgleichung (6). Die Ldsung fir den hier interessierenden Schwing-
fall, d. h. schwache Dampfung, lautet:

I =1,e"°" cos (wt — @) (8)
mit EN (9)
%)
und @ =arctan | — |. (10)
@

Die durch die GI.(8) beschriebene gedampfte Schwingung ist in Abb. 1 dargestellt.
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Abb. 1: Zeitlicher Verlauf einer exponentiell abklingenden gedampften Schwingung



Aus dem Verhdaltnis zweier aufeinander folgender Maximalausschlage |, und It
kann das logarithmische Dekrement A bestimmt werden

A=In(1,/1,.,)=0T . (11)

Die Schwingungsdauer T einer gedampften Schwingung kann aus der Schwingungs-

dauer Ty der ungedampften Schwingung und dem logarithmischen Dekrement A
berechnet werden.

2 2
T=T,,/1+ A =T,,/1+ RT : (12)
271 4nL
Far kleine Dampfungen gilt in guter Naherung
T~T,=2n,/LC . (13)

2.2  Erzwungene Schwingungen im Reihenschwingkreis

Die Beschreibung erzwungener Schwingungen geschieht bei mechanischen
Systemen durch Aufstellen der jeweiligen Bewegungsgleichung, bei den elektrischen
Systemen mit Hilfe des Maschensatzes (2. Kirchhoff'sche Regel). Dabei entstehen
Differentialgleichungen fir die einzelnen physikalischen GroR3en, deren
mathematische Formen einander aquivalent sind.

Federschwinger: mX+rX+k x=F,cosa,t (bzw. F, &) (14)

bzw. X+20%+a; x=Kcosaw,t (bzw.K -e'“") (15)
. -r/. 2 k . i F/

m 20% /m’ a)o_%n’ K="

Drehschwinger: Jp+1r'¢p+De=M, cosa,t (bzw.M ') (16)

bzw. $+20p+w.p =Kcosw,t  (bzw. Ke*") (17)

mit 25:!‘%; a)g:%; KzM%

Elektrischer Reihenschwingkreis (Elektrische Bewegungsgleichung — 2. Kirch-
hoff'sche Regel — Maschensatz)

LQ+R Q+Qé:U0 cosw,t (bzw.U_e") (18)



bzw. Q+26Q+w}Q=Kcosw,t (bzw. Ke'") (19)

mit 25:%; a)(f:%_c; K:U%

Es handelt sich dabei um inhomogene Differentialgleichungen 2. Ordnung mit
konstanten Koeffizienten. Diese Schwingungssysteme werden harmonisch erregt.
Die allgemeine Losung dieser Gleichungen besteht aus der Summe einer Losung

(Xu, Qu); der homogenen Differentialgleichung (z. B. GIl.(6)) und einer speziellen

Losung(xs, Qs)der inhomogenen Differentialgleichung (z. B. G1.(19)),

z. B. Federschwinger X(t) =X, () + X (1) (20)
bzw. Reihenschwingkreis Q(t)=Q, (1) +Q4(t) (21)

mit den Bereichen: Schwingfall (5<a)0); periodischer Grenzfall (52(:)0) und

Kriechfall (0 >a®,). Da bei vorhandener Dampfung (5>O) die jeweilige Amplitude
der homogenen Losung mit exp(—ot) abfallt, werden im Weiteren nur Zustéande
betrachten, fur die ot>>1 gilt, so dass Xy << Xg wird. Dieser Zustand wird als

stationar bezeichnet. Es gilt dann
X(1)=x(t) bzw. Q(1)=Qy(t) - (22)
Fur die stationare Losung Qs wird ein Losungsansatz

Q, =Q,e' ™" (23)

gemacht.

Wenn beim Einsetzen des Ldsungsansatzes Gl.(23) in die elektrische Bewegungs-
gleichung GI.(19) alle Zeitabhangigkeiten herausfallen, ist der Losungsansatz eine
LOsung.

— 0’ +iw 25+ @ )Q.e' " =Ke'™! (24)
( a a o) 0
QO((a)g—wf)+i25a)a)ei‘”:K (25)

Da Qo und K reelle GréRen sind, muss



[(a)j —a)f)+i25a)a}ei"’ C :\/(a)o2 ~@; )2 +(26w,) € 6" (26)

20w
ebenfalls reell sein, tanp =———" (27)
a)O _a)a
Daraus folgt: evr.ev =" =1 mit p=—g,. (28)

Fur ¢ erhalten wir dann
20w,

tanp=tan(—¢, )]=—tan @, =— (29)
p=tan(-¢,) i

20w,
@=arctan| ———-+ (30)

a)O _a)a

und fir Qo als Funktion von @
K

Qoz (31)

\/(a)j ~w )2 +(26w, )2

In der Elektrotechnik sind jedoch fur die Behandlung von Wechselstromkreisen, d. h.
auch von Reihenschwingkreisen, die GroRen U(t) und I(t) relevant.
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U,= U, coso,t Uo= —=~ R U.=T(t)R
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Abb. 2: Reihenschwingkreis mit aul3erer Anregung, U, ist die von auf3en

angelegte Erregerspannung.

Wird die Differentialgleichung GI.(18) nochmals nach der Zeit differenziert, ergibt
sich:



Li'+RI'+I/C=$. (32)

t

Mit U=U.'*" und dem Losungsansatz I(t)=1¢""*"" lasst sich GI.(32) wie folgt

darstellen:
("o} L+im, R+1/C)1()=io,U () (33)

Die Division durch iw, und Umordnen von GI.(33) fuhrt zu

{Rﬂ[a)a L—LH 1(t)=U (t). (34)
o C

Daflr kann in Analogie zum Ohm’schen Gesetz
Z 1(t)=U(t) (35)
geschrieben werden mit Z=R +i((a)a L—%) Cj (36)

als komplexen Wechselstromwiderstand (Impedanz). Durch eine von auf3en
angelegte Spannung U(t)=U, cosm,t flie3t in einem Reihenschwingkreis ein Strom

I(t)=1,cos(o,t—¢) mit den Werten flr

— UO
l= 2 (37)
JRz{%Lj
,C
.
N o,C
und fur tanq)zT. (38)

Wahrend die Amplitude Q,(w,) bzw. U.(®,) das Maximum bei

O po =@ —26° (39)

hat, liegt es fiir 1,(w) bei o, =w,. Das Maximum der aufgenommenen Leistung einer

erzwungenen Schwingung liegt in allen Fallen bei o, .



In Abb. 3 ist flr unterschiedliche Dampfungen die normierte Amplitudenfunktion der
Spannung am Kondensator Uc in Abhangigkeit vom Verhéltnis n=w, / @, dargestellt.
Man erkennt, dass mit steigendem Dampfungsgrad (D=0/w,) die Amplituden-

(Spannungs-) Uberhéhung im Resonanzfall stark abnimmt und gleichzeitig die
Resonanzfrequenz zu kleineren Werten verschoben wird.
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Abb. 3: Amplitudenresonanzfunktion

Diese Amplitudentiberhéhung findet nur bis zu einem Grenzdampfungsgrad statt, fir
den die Wurzel in GI.(39) noch reell ist. Diese Grenze liegt bei

Do, == (40)
w, 2

Bei Uberschreiten dieses Grenzdampfungsgrades D, fallen die Amplituden mit

zunehmenden Kreisfrequenzverhdltnissen 7 standig ab (tUberkritische Dampfung).

Das Verhéltnis von Resonanzamplitude |L_JC

und der statischen Auslenkung U,

max

wird Resonanziiberhéhung genannt. Mit dem Dampfungsgrad D =6/a, ergibt sich

die Resonanziberhéhung zu



Yol 1 . (41)

U, 2D,/1-D?

Fur den betrachteten Fall der geringen Dampfung gilt in guter Naherung

U
|—C max zL (42)
U, 2D
Dies beschreibt die Giite eines Schwingkreises, so dass naherungsweise gilt
U
|—Cmax szqzizl\/E_ (43)
U, 2D Aw R\C

Die Gute eines Schwingkreises nimmt also mit steigender Resonanztiberhéhung zu.
Ein wichtiges MaR fir die Trennschéarfe eines Schwingkreises ist die Halbwertsbreite
der Resonanzkurve. Man versteht darunter den Abstand A® der beiden Frequenzen,

bei denen die Amplitude auf das 1/+/2 -fache ihres Maximalwertes abgesunken ist
(Abb. 4).
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Abb. 4: Resonanziiberh6hung und Gite eines Schwingkreises
Mit der Gute q des Schwingkreises hangt auch seine Bandbreite A®w zusammen.

Unter ihr versteht man den Abstand der Grenzkreisfrequenzen m; und , innerhalb

dessen die Amplitude auf das 1/~/2 -fache ihres Maximalwertes abgefallen ist. Aus
Gl.(41) ergibt sich fur die Bandbreite



Aa)za)z—a)lz% . (44)

Die Darstellung des Phasenverschiebungswinkels a(a)a) zwischen Ausgangs- (U,)

und Eingangsgrolle (Ue) in Abhangigkeit von der Erregerfrequenz wird als

Phasengang bezeichnet. Der Phasenverschiebungswinkel kann aus dem
Imaginarteil (Im(F))und dem Realteil (Re(F)) einer Amplitudenfunktion F wie folgt
berechnet werden

a(w,)+ <(U,.U,)=arctan EZEIE; : (45)

Fur die Phasenverschiebung zwischen der Spannung am Kondensator (U.) und der

Erregerspannung U(t) folgt dann

o (coa) = arctanlL . (46)
——-o,L
,C
i —
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Abb. 5: Phasenresonanzfunktion
Fur sehr kleine Dampfung zeigt der Reihenschwingkreis fir Erregerfrequenzen

w, < @, ein reinkapazitives Verhalten, d. h. die Phasenverschiebung ist Null. Fir

Erregerfrequenzen w, < ®, liegt dagegen ein rein induktives Verhalten, d. h. p==.

Bei der Eigenfrequenz w, = w, erfolgt im dampfungsfreien Fall der sprunghafte
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Ubergang vom kapazitiven zum induktiven Verhalten (Agp=m). Mit steigender

Dampfung wird dieser Ubergang verflacht.

3. Versuchsdurchfiihrung

Fur die Versuchsdurchfihrung wird das an einem PC angeschlossene Messerfas-
sungssystem “Cassy” genutzt, welches aus zwei Teilen, dem “Power Cassy"* zur
programmierbaren Spannungserzeugung und dem “Sensor Cassy“ zur Messwert-
aufnahme, besteht.

Bauen Sie entsprechend Abb. 6 den Reihenschwingkreis auf der Rastersteckplatte
auf. Die fur den jeweiligen Versuchsteil notwendige Spannung wird dem “Power
Cassy” (Ausgange U/l) entnommen, die erforderlichen Spannungen werden mit dem
“Sensor Cassy” (Eingange A/U bzw. B/U) gemessen.
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Abb. 6: Reihenschwingkreis, Messschaltung

3.1 freie gedampfte Schwingung

Zur periodischen Anregung des Schwingkreises wird das “Power Cassy® als
Impulsgenerator (z. B. Rechteckgenerator mit Tastverhdaltnis 20:1) verwendet. Die
Frequenz dieser Anregung muss klein sein im Vergleich zur Eigenfrequenz des
Schwingkreises (warum?).

Nehmen Sie den Schwingungsverlauf fir charakteristische Dampfungen mit Hilfe des

“Cassy“-Systems auf. Verandern Sie dabei R zwischen 0 und seinem Maximalwert,
Bestimmen Sie dann die Schwingungsdauer und die Amplituden der gedampften

Schwingung fiir den Fall R = 0, und berechnen Sie die geforderten GroRRen.
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Fuhren Sie die gleichen Messungen fir groRere Dampfungen (R = 0) durch.
Ermitteln Sie die zugehotrigen Schwingungsdauern und stellen Sie fest, ob innerhalb
der Fehlergrenzen ein Einfluss der Dampfung entsprechend GI.(12) auf die

Schwingungsdauer vorliegt.

3.2  Reihenschwingkreis

Die Anregung des Reihenschwingkreises erfolgt in diesem Teilexperiment durch eine
sinusférmige Spannung mit konstanter Amplitude. Die Erregerfrequenz kann mit Hilfe
des “Power Cassy“-Systems in wahlbaren Stufen in einem vorgegebenen
Frequenzbereich geadndert werden, so dass eine direkte Aufnahme madglich ist.
Nehmen Sie die Eingangsspannung, den Eingangsstrom sowie die Spannung Uber
den Kondensator in Abhangigkeit von der Frequenz fur drei Dampfungen auf.

Stellen Sie die auf die Gesamtspannung normierte Spannung am Kondensator, den
Gesamtstrom und die Phasenverschiebung in Abhangigkeit von der Frequenz
grafisch dar. Diskutieren Sie die erhaltenen Verlaufe hinsichtlich der
Resonanzfrequenz. Ermitteln Sie grafisch und rechnerisch fir die drei Dampfungen

die Glte und die Bandbreite des Schwingungskreises.

4 Kontrollfragen

4.1 Was geschieht, wenn ein Kondensator Uber einen Widerstand an eine
Gleichspannungsquelle angeschlossen ist?

4.2  Warum erreicht der Strom in einer Spule, die Uber einen Widerstand an eine
Spannungsquelle angeschlossen wird, nicht sofort seinen Endwert?

4.3  Welche beiden Vorgange spielen sich in einem einmal angeregten und dann
sich selbst Uberlassenen LC-Kreis ab? Warum fihren sie zu einer
elektrischen Schwingung?

4.4 Wie lautet die Differentialgleichung fiir die freie gedampfte elektrische
Schwingung eines LCR-Kreises? Welchen mechanischen Grol3en
entsprechen die darin vorkommenden GréRen jeweils? Welche Lésung ergibt
sich fur unterkritische Dampfung, wie sieht ihr Bild aus?

4.5 Wie kann man Schwingungsdauer und logarithmisches Dekrement einer
freien elektrischen Schwingung experimentell bestimmen? Wie hangen sie

von den Schaltelementen des Schwingkreises ab?
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4.6

4.7

4.8

4.9

Wie ergibt sich in einem elektrischen Schwingkreis, der erzwungene
Schwingungen ausfiuhrt, die Stromstarke aus der wirkenden Spannung?
Welcher Wechselstromwiderstand ergibt sich bei einem LCR-Kreis im Falle
der Resonanz?

Wie hangen die charakteristischen GréRen der Resonanzkurve eines
elektrischen Schwingkreises von dessen Schaltelementen ab? Welche
Zusammenhange bestehen zu den Grolen der freien gedampften
Schwingung?

Welche Funktion hat der in Abb.2 dargestellte Schwingkreis in der
Elektrotechnik?
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