
 
 V 14             Schwingkreis 
 
 
1 Aufgabenstellung 
 
1.1 Stellen Sie eine freie schwach gedämpfte Schwingung eines 

Reihenschwingkreises dar. Bei gegebener Kapazität C soll die Induktivität L 
und der Ohm’sche Widerstand Ri der Spule bestimmt werden. Untersuchen 
Sie weiterhin den Einfluss eines Dämpfungswiderstandes R auf das 
Schwingungsverhalten. 

 

1.2 Nehmen Sie für verschiedene Dämpfungen die Spannungs- und die 
 Phasen-Resonanzkurve eines Reihenschwingkreises in Abhängigkeit von der 
Frequenz auf, und bestimmen Sie die zugehörige Resonanzfrequenz, die 
Schwingkreisgüte und die Bandbreite. 

 
2 Theoretische Grundlagen 
 
 Stichworte zur Vorbereitung: 

Wechselstromgrößen, komplexe Widerstände, ungedämpfte, gedämpfte und 
erzwungene Schwingungen, Eigenfrequenz, Resonanzfrequenz, Reihen- und 
Parallelschwingkreis, Schwingkreisgüte, Dämpfungsfaktor, Bandbreite 
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Schwingungen treten in der Physik und in technischen Gebilden häufig auf. Es 
handelt sich dabei um periodische Veränderungen physikalischer Größen, wie z. B. 
Weg (x), Drehwinkel (ϕ ), Ladung (Q), Strom (I) oder Spannung (U), um nur einige 

zu nennen. Können diese periodischen Veränderungen durch eine Sinus- bzw. 
Cosinus-Funktion beschrieben werden, werden sie als harmonische Schwingungen 
der jeweiligen physikalischen Größe bezeichnet. Beispiele dafür sind 
Federschwinger, Drehschwinger oder der elektrische Reihenschwingkreis. 
 
2.1 Freie Schwingungen 
Die physikalischen Gesetzmäßigkeiten, die charakteristisch für eine freie 
Schwingung sind, sollen hier am Beispiel eines LC-Schwingkreises dargestellt 
werden. Lädt man einen Kondensator C auf die Spannung U0 und entlädt ihn über 
eine parallel geschaltete Spule, so müssen zu jeder Zeit die Spannungen am 
Kondensator und der Spule gleich groß sein: 
 

 /L I Q C− =  . (1) 
 

Um Q zu eliminieren ist die zeitliche Ableitung von Gl.(1) zu bilden, diese ergibt die 
Differentialgleichung 
 

 / 0L I I C+ =  . (2) 
 

Sie hat genau die gleiche Struktur wie die Schwingungsgleichung für einen 
mechanischen harmonischen Oszillator. Analog ergibt sich für den Strom auch eine 
harmonische Schwingung 
 

 0i
0( ) tI t I e ω= ⋅  . (3) 

 

mit der Eigenfrequenz 

 0
1
LC

ω =  . (4) 

 

Nach dem Ohm’schen Gesetz gilt gleiches für die Spannung. Die Parallelschaltung 
von Spule und Kondensator wird deshalb als elektrischer Schwingkreis bezeichnet. 
Genau wie beim mechanischen Oszillator tritt auch beim elektrischen Schwingkreis 
unvermeidlich eine Dämpfung auf, hier verursacht durch den Ohm’schen Widerstand 
R der Leitungen. Dieser wirkt, als ob er in Reihe zu den anderen Bauelementen 

geschaltet ist. In Gl. (1) ist nun zusätzlich der Spannungsabfall an R zu berück-
sichtigen, und man erhält 
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 /L I Q C R I− = +  . (5) 
 

Die zeitliche Ableitung von Gl. (5) führt wieder zu einer homogenen Differential-
gleichung der Struktur 
 

 2
02 0I I Iδ ω+ + =   (6) 

wobei  

 
2
R
L

δ =   (7) 

der Dämpfungsfaktor des elektrischen Schwingkreises ist.  
In Analogie zur Mechanik ergeben sich auch hier in Abhängigkeit vom Vorzeichen 

der Differenz  2
0
2δ ω−  die charakteristischen Lösungen 

 - Schwingfall δ ω<  

 - Grenzfall δ ω=  

 - Kriechfall δ ω>  

für die Differentialgleichung (6). Die Lösung für den hier interessierenden Schwing-
fall, d. h. schwache Dämpfung, lautet:   
 

 ( ) )
0 cos ( )tI I e tδ ω ϕ−= −  (8) 

 

mit 2
0

2ω ω δ= −  (9) 
 

und arctan δϕ
ω

⎛ ⎞= ⎜ ⎟
⎝ ⎠

. (10) 

 

Die durch die Gl.(8) beschriebene gedämpfte Schwingung ist in Abb. 1 dargestellt. 
 

T

t

I
In
In+1

 
 
 
 
 
 
 
 
 

Abb. 1: Zeitlicher Verlauf einer exponentiell abklingenden gedämpften Schwingung 

  3 
 



Aus dem Verhältnis zweier aufeinander folgender Maximalausschläge In und In+1 

kann das logarithmische Dekrement Λ  bestimmt werden 
 

 ( )n n +1ln /I I TδΛ = =   . (11) 

 

Die Schwingungsdauer T einer gedämpften Schwingung kann aus der Schwingungs-

dauer T0 der ungedämpften Schwingung und dem logarithmischen Dekrement Λ  
berechnet werden. 
 

 
22

0 01 1
2π 4π

RTT T T
L

⎛ ⎞Λ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  . (12) 

 

Für kleine Dämpfungen gilt in guter Näherung 
 

 0 2πT T L C≈ =   . (13) 
 

2.2 Erzwungene Schwingungen im Reihenschwingkreis 
Die Beschreibung erzwungener Schwingungen geschieht bei mechanischen 
Systemen durch Aufstellen der jeweiligen Bewegungsgleichung, bei den elektrischen 
Systemen mit Hilfe des Maschensatzes (2. Kirchhoff’sche Regel). Dabei entstehen 
Differentialgleichungen für die einzelnen physikalischen Größen, deren 
mathematische Formen einander äquivalent sind. 
 

Federschwinger:   (14) i
0 a 0cos ( . )tm x r x k x F t bzw F e ωω+ + =

bzw.        2
0 a2 cos ( . ti )x x x K t bzw K e ωδ ω ω+ + = ⋅  (15) 

mit   2 0
02 ; ; Fkr Km mδ ω= = = m

i

i )

 

 

Drehschwinger:   (16) *
0 acos ( . )t

oJ r D M t bzw M e ωϕ ϕ ϕ ω+ + =

bzw. 2
a2 cos ( . t

o K t bzw Ke ωϕ δϕ ω ϕ ω+ + =  (17) 

mit     
* 2 0

02 ; ; Mr D KJ Jδ ω= = = J   

 

Elektrischer Reihenschwingkreis (Elektrische Bewegungsgleichung – 2. Kirch-
hoff’sche Regel – Maschensatz) 
 

 i
0 acos ( . )t

o
QL Q R Q U t bzw U eC

ωω+ + =  (18) 
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bzw.  (19) 2
0 a2 cos ( . tQ Q Q K t bzw Ke ωδ ω ω+ + = i )

mit 2 0
0

12 ; ; UR KL LC Lδ ω= = =  

 

Es handelt sich dabei um inhomogene Differentialgleichungen 2. Ordnung mit 
konstanten Koeffizienten. Diese Schwingungssysteme werden harmonisch erregt. 
Die allgemeine Lösung dieser Gleichungen besteht aus der Summe einer Lösung 
(xH, QH); der homogenen Differentialgleichung (z. B. Gl.(6)) und einer speziellen 

Lösung(xS, QS)der inhomogenen Differentialgleichung (z. B. Gl.(19)), 
 

z. B.  Federschwinger H S( ) ( ) ( )x t x t x t= +  (20) 

bzw. Reihenschwingkreis H S( ) ( ) ( )Q t Q t Q t= +  (21) 
 

mit den Bereichen: Schwingfall ( )0δ ω< ; periodischer Grenzfall ( )0δ ω=  und 

Kriechfall 0( )δ ω> . Da bei vorhandener Dämpfung ( )0δ >  die jeweilige Amplitude 

der homogenen Lösung mit exp( )tδ−  abfällt, werden im Weiteren nur Zustände 

betrachten, für die  1tδ >>   gilt, so dass xH << xS wird. Dieser Zustand wird als 

stationär bezeichnet. Es gilt dann 
 

 S S( ) ( ) bzw. ( ) ( )x t x t Q t Q t= =  . (22) 
 

Für die stationäre Lösung QS wird ein Lösungsansatz 
 

 ai( )
0

t
SQ Q e ω ϕ+=    (23) 

 

gemacht. 
Wenn beim Einsetzen des Lösungsansatzes Gl.(23) in die elektrische Bewegungs-
gleichung Gl.(19) alle Zeitabhängigkeiten herausfallen, ist der Lösungsansatz eine 
Lösung. 
 

 ( ) ai2 2 i
a a 0 0i 2 tQ e e Ke ai tω ωϕω ω δ ω− + + ⋅ =  (24) 

 

 ( )( )2 2 i
0 0 a ai2Q ϕω ω δ ω e K− + =  (25) 

 

Da Q0 und K reelle Größen sind, muss 
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 ( ) ( ) ( ) 1
2 2 i2 2 i 2 2 i

0 a a 0 a ai2 2e C e eϕϕ ϕω ω δω ω ω δω⎡ ⎤− + ⋅ = − + ⋅ ⋅⎣ ⎦  (26) 

 

ebenfalls reell sein,  a
1 2

0 a

2tan 2

δ ωϕ
ω ω

=
−

 (27) 

 

Daraus folgt:   ( )11 ii i 1e e e ϕ ϕϕ ϕ +⋅ = =     mit  1ϕ ϕ=− . (28) 
 

Für ϕ erhalten wir dann  

 ( ) a
1 1 2

0 a

2tan tan tan 2

δωϕ ϕ ϕ
ω ω

= − =− =−
−

 (29) 

 

 a
2 2
0 a

2arc tan δ ωϕ
ω ω

⎛ ⎞
= −⎜ −⎝ ⎠

⎟  (30) 

 

und für Q0 als Funktion von ω  
 

 
( ) ( )

0 2 22 2
0 a a2

KQ
ω ω δω

=
− +

 (31) 

 

In der Elektrotechnik sind jedoch für die Behandlung von Wechselstromkreisen, d. h. 
auch von Reihenschwingkreisen, die Größen U(t) und I(t) relevant.  
 

U = U cos ta 0 a   ω U =C  

L(R )L C

Q(t)

C
R

 
 
 
 
 
 
 
 
 

Abb. 2: Reihenschwingkreis mit äußerer Anregung,  ist die von außen  aU

   angelegte Erregerspannung. 
 
Wird die Differentialgleichung Gl.(18) nochmals nach der Zeit differenziert, ergibt 
sich: 
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 d ( )/
d
U tL I R I I C

t
+ + = . (32) 

 

Mit  und dem Lösungsansatz ai
0

tU U e ω= ai( )( ) t
oI t I e ω ϕ−=  lässt sich Gl.(32) wie folgt 

darstellen: 
 

  (33) ( )2 2
a a ai i 1/ ( ) iL R C I t Uω ω ω+ + = ( )t

 

Die Division durch aiω  und Umordnen von Gl.(33) führt zu 
 

 a
a

1i ( ) ( ).R L I t U
C

ω
ω

⎡ ⎤⎛ ⎞
+ − =⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

t  (34) 

 

Dafür kann in Analogie zum Ohm’schen Gesetz   
 

 ( ) ( )Z I t U t=  (35) 

geschrieben werden mit  a
a

1i (Z R L Cω ω
⎛= + −⎜
⎝ ⎠

⎞⎟

a

 (36) 

 

als komplexen Wechselstromwiderstand (Impedanz). Durch eine von außen 
angelegte Spannung 0( ) cosU t U tω=  fließt in einem Reihenschwingkreis ein Strom  

0 a( ) cos( )I t I tω ϕ= −  mit den Werten für  
 

 0
0 2

2
a

a

1

UI

R L
C

ω
ω

=
⎛ ⎞

+ −⎜ ⎟⎜ ⎟
⎝ ⎠

 (37) 

 

und für  
a

a

1

tan .
L

C
R

ω
ω

ϕ
−

=  (38) 

 

Während die Amplitude 0 a( )Q ω  bzw. C a( )U ω  das Maximum bei  
 

 2
RQ 0 2 2ω ω δ= −  (39) 

 

hat, liegt es für 0 ( )I ω  bei RI 0ω ω= . Das Maximum der aufgenommenen Leistung einer 

erzwungenen Schwingung liegt in allen Fällen bei  0ω . 
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In Abb. 3 ist für unterschiedliche Dämpfungen die normierte Amplitudenfunktion der 
Spannung am Kondensator UC in Abhängigkeit vom Verhältnis a / 0η ω ω=  dargestellt. 

Man erkennt, dass mit steigendem Dämpfungsgrad ( 0/D δ ω= ) die Amplituden-

(Spannungs-) Überhöhung im Resonanzfall stark abnimmt und gleichzeitig die 
Resonanzfrequenz zu kleineren Werten verschoben wird.  
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Abb. 3: Amplitudenresonanzfunktion 
 

Diese Amplitudenüberhöhung findet nur bis zu einem Grenzdämpfungsgrad statt, für 
den die Wurzel in Gl.(39) noch reell ist. Diese Grenze liegt bei  
 

 Gr
0

1 2
2

D δ
ω

= =  (40) 

 

Bei Überschreiten dieses Grenzdämpfungsgrades  fallen die Amplituden mit 

zunehmenden Kreisfrequenzverhältnissen η ständig ab (überkritische Dämpfung). 

Das Verhältnis von Resonanzamplitude 

GrD

C maxU  und der statischen Auslenkung  

wird Resonanzüberhöhung genannt. Mit dem Dämpfungsgrad 

0U

0/D δ ω=  ergibt sich 

die Resonanzüberhöhung zu 
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 C max
2

0

1
2 1

U
U D D

=
−

 . (41) 

 

Für den betrachteten Fall der geringen Dämpfung gilt in guter Näherung  
 

 C max

0

1
2

U
U D

≈ . (42) 

 

Dies beschreibt die Güte eines Schwingkreises, so dass näherungsweise gilt  
 

 C max

0

1
2

U Lq
U D R

ω
ω

≈ = = =
Δ

1
C

. (43) 

 

Die Güte eines Schwingkreises nimmt also mit steigender Resonanzüberhöhung zu. 
Ein wichtiges Maß für die Trennschärfe eines Schwingkreises ist die Halbwertsbreite 
der Resonanzkurve. Man versteht darunter den Abstand ωΔ  der beiden Frequenzen, 

bei denen die Amplitude auf das 1/ 2 -fache ihres Maximalwertes abgesunken ist 
(Abb. 4). 
 

1

ω1

Δω 
ω2

ω
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U0

UC
U0

max

UC1
U0

max.
√2

 
 
 
 
 
 
 
 
 
 
 
 
 

Abb. 4:  Resonanzüberhöhung und Güte eines Schwingkreises 
 

Mit der Güte q des Schwingkreises hängt auch seine Bandbreite ωΔ  zusammen. 

Unter ihr versteht man den Abstand der Grenzkreisfrequenzen ω1 und ω2, innerhalb 

dessen die Amplitude auf das 1/ 2 -fache ihres Maximalwertes abgefallen ist. Aus 
Gl.(41) ergibt sich für die Bandbreite 
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 r
2 1 q

ωω ω ωΔ = − =   . (44) 

 

Die Darstellung des Phasenverschiebungswinkels ( )aα ω  zwischen Ausgangs- (Ua) 

und Eingangsgröße (  in Abhängigkeit von der Erregerfrequenz wird als 

Phasengang bezeichnet. Der Phasenverschiebungswinkel kann aus dem 
Imaginärteil (Im(

)eU

F))und dem Realteil (Re(F)) einer Amplitudenfunktion F wie folgt 
berechnet werden 
 

  <( )aα ω = ( )a e
Im( ), arctan
Re( )

FU U
F

=   . (45) 

 

Für die Phasenverschiebung zwischen der Spannung am Kondensator (Uc) und der 

Erregerspannung U(t) folgt dann 
 

 ( ) =ωα a

a
a

arctan 1
R

L
C

ω
ω

−
  . (46) 
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Abb. 5: Phasenresonanzfunktion 
 

Für sehr kleine Dämpfung zeigt der Reihenschwingkreis für Erregerfrequenzen  

ωa < ωo ein reinkapazitives Verhalten, d. h. die Phasenverschiebung ist Null. Für 

Erregerfrequenzen ωa < ωo liegt dagegen ein rein induktives Verhalten, d. h. ϕ = . π

Bei der Eigenfrequenz ωa = ωo erfolgt im dämpfungsfreien Fall der sprunghafte 
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Übergang vom kapazitiven zum induktiven Verhalten ( πϕΔ = ). Mit steigender 

Dämpfung wird dieser Übergang verflacht. 
 

3. Versuchsdurchführung 
 

Für die Versuchsdurchführung wird das an einem PC angeschlossene Messerfas-
sungssystem “Cassy“ genutzt, welches aus zwei Teilen, dem “Power Cassy“ zur 
programmierbaren Spannungserzeugung und dem “Sensor Cassy“ zur Messwert-
aufnahme, besteht.  
Bauen Sie entsprechend Abb. 6 den Reihenschwingkreis auf der Rastersteckplatte 
auf. Die für den jeweiligen Versuchsteil notwendige Spannung wird dem “Power 
Cassy“ (Ausgänge U/I) entnommen, die erforderlichen Spannungen werden mit dem 
“Sensor Cassy“ (Eingänge A/U bzw. B/U) gemessen. 
 
 

R

Lx

C

A I

I

U

U
B

U/I

Power Cassy Sensor Cassy

 
 
 
 
 
 
 
 
 
 
 
 
 

Abb. 6: Reihenschwingkreis, Messschaltung 
 

3.1 freie gedämpfte Schwingung 
Zur periodischen Anregung des Schwingkreises wird das “Power Cassy“ als 
Impulsgenerator (z. B. Rechteckgenerator mit Tastverhältnis 20:1) verwendet. Die 
Frequenz dieser Anregung muss klein sein im Vergleich zur Eigenfrequenz des 
Schwingkreises (warum?). 
Nehmen Sie den Schwingungsverlauf für charakteristische Dämpfungen mit Hilfe des 

“Cassy“-Systems auf. Verändern Sie dabei R zwischen 0 und seinem Maximalwert, 

Bestimmen Sie dann die Schwingungsdauer und die Amplituden der gedämpften 

Schwingung für den Fall R = 0, und berechnen Sie die geforderten Größen. 
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Führen Sie die gleichen Messungen für größere Dämpfungen (R ≠ 0) durch. 

Ermitteln Sie die zugehörigen Schwingungsdauern und stellen Sie fest, ob innerhalb 

der Fehlergrenzen ein Einfluss der Dämpfung entsprechend Gl.(12) auf die 

Schwingungsdauer vorliegt. 
 

3.2 Reihenschwingkreis 
 

Die Anregung des Reihenschwingkreises erfolgt in diesem Teilexperiment durch eine 

sinusförmige Spannung mit konstanter Amplitude. Die Erregerfrequenz kann mit Hilfe 

des “Power Cassy“-Systems in wählbaren Stufen in einem vorgegebenen 

Frequenzbereich geändert werden, so dass eine direkte Aufnahme möglich ist. 

Nehmen Sie die Eingangsspannung, den Eingangsstrom sowie die Spannung über 

den Kondensator in Abhängigkeit von der Frequenz für drei Dämpfungen auf. 

Stellen Sie die auf die Gesamtspannung normierte Spannung am Kondensator, den 

Gesamtstrom und die Phasenverschiebung in Abhängigkeit von der Frequenz 

grafisch dar. Diskutieren Sie die erhaltenen Verläufe hinsichtlich der 

Resonanzfrequenz. Ermitteln Sie grafisch und rechnerisch für die drei Dämpfungen 

die Güte und die Bandbreite des Schwingungskreises. 
 

4 Kontrollfragen 
 

4.1 Was geschieht, wenn ein Kondensator über einen Widerstand an eine 

Gleichspannungsquelle angeschlossen ist? 

4.2 Warum erreicht der Strom in einer Spule, die über einen Widerstand an eine 

Spannungsquelle angeschlossen wird, nicht sofort seinen Endwert? 

4.3 Welche beiden Vorgänge spielen sich in einem einmal angeregten und dann 

sich selbst überlassenen LC-Kreis ab? Warum führen sie zu einer    

elektrischen Schwingung? 

4.4 Wie lautet die Differentialgleichung für die freie gedämpfte elektrische 

Schwingung eines LCR-Kreises?  Welchen mechanischen Größen 

entsprechen die darin vorkommenden Größen jeweils? Welche Lösung ergibt 

sich für unterkritische Dämpfung, wie sieht ihr Bild aus? 

4.5 Wie kann man Schwingungsdauer und logarithmisches Dekrement einer   

freien elektrischen Schwingung experimentell bestimmen? Wie hängen sie 

von den Schaltelementen des Schwingkreises ab?  
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4.6 Wie ergibt sich in einem elektrischen Schwingkreis, der erzwungene 

Schwingungen ausführt, die Stromstärke aus der wirkenden Spannung? 

4.7 Welcher Wechselstromwiderstand ergibt sich bei einem LCR-Kreis im Falle 

 der Resonanz? 

4.8 Wie hängen die charakteristischen Größen der Resonanzkurve eines 

elektrischen Schwingkreises von dessen Schaltelementen ab? Welche 

Zusammenhänge bestehen zu den Größen der freien gedämpften 

Schwingung? 

4.9 Welche Funktion hat der in Abb. 2 dargestellte Schwingkreis in der    

Elektrotechnik? 
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