

Guest Lecture "Magnetic Functional Materials" within the AFM module, Facets of Materials"

Feedback Session I (the basics)

Prof. Dr. Olav Hellwig

Lehrstuhl für Magnetische Funktionsmaterialien

Sommersemester 2021

Fridays 9:15 – 10:45 Uhr

2.7.2021

Prof. Dr. Olav Hellwig

www.tu-chemnitz.de

Sorry, the first couple of slides in the recorded lecture were presented in German, since the lecture was originally recorded for the German physics module *"*Komplexe Materialien"!

I will show the corresponding English slides here in the review session and will once more go through the outline of the recorded lecture.

Introduction

ISCHE UNIVERSITÄT CHEMNIT7

- Energies und energy densities of a ferromagnetic sample
 - Exchange Interaction

Content

- Stray field or demagnetization energy, shape anisotropy
- Additional anisotropy energies (except for shape anisotropy = demagnetization energy)
- Zeemann energy, external fields
- Mutual competition between the different magnetic energy terms
- Hysteresis-effects, Stoner-Wohlfarth model, basis for binary magn. data storage)
- Magnetic functional materials for data storage
 - Development of the hard disk drive: from magnetic Micro-systems to Nano-systemes
 - GMR (Giant magnetoresisance) and TMR effects for high sensitivity magnetic read heads
 - Future hard disk drive technologies
 - New effects in the magnetic nano-world: Spin tranfer torque in Nano-contacts
 - Separation of charge and spin currents: Spin orbit torque in thin films systems
 - New applications Magnetic Random Access Memory (MRAM)
 - Spin waves as new information carriers (HZDR-movie)

3

Inhalt

- Guest-lecture "Komplexe Materialien" part 1: FM functional materials for data storage (some basics) (1:36:31)
- Guest-lecture "Komplexe Materialien" part 2: FM functional materials for data storage (applications) (1:32:24)
- Total lecture time 3:08:55

TECHNISCHE UNIVERSITÄT CHEMNIT7

Questions ?

We can go to the corresponding slide and discuss !

Lecture Review

• 12 +2 questions about the last lecture ...

Do you remember?

Which elements are ferromagnetic at room temperature?

- A: Fe, Cr, Mn
- B: Co, Fe, Cr
- C: Ni, Fe, Co
- D: Co, Ni, Fe, Tb
- E: Gd, Fe, Co, Ni

ı danı danı danı danı danı danı danı dan	
TECHNISCHE UNIVERSITÄT CHEMNITZ	

Magnetic Elements

1.00	I								Twel	ve are a	antiferro	magnti	c, one a	at RT			4.00
												6 D		7.1			10.01-0
5 LI 6.94	⁴ Be 9.01	1		Aton	nic Numbe	ber 66 Dy Atomic symbol				о В 10.81	° C 12.01	' N 14.01	° O 16.00	9 F 19.00	20.18		
1+250	2+250		Anti	Typical io ferromagr	nic charge netic T _w (K		3 + 4₱ 179 85 Ferromagnetic T _c (K)								35		
¹¹ Na 22.99 1 + 3 <i>s</i> º	¹² Mg 24.21 2 + 3s ⁰				end in the second renollaging					13 AI 26.98 3 + 2 <i>p</i>			¹⁴ Si 28.09	15 P 30.97	16 S 32.07	¹⁷ Cl 35.45	¹⁸ Ar ^{39.95}
¹⁹ K 39.10 1 + 4 <i>s</i> °	²⁰ Ca ^{40.08} 2 + 4s ⁰	²¹ Sc 44.96 3 + 3 <i>d</i> ⁰	²² Ti 47.88 4 + 3d ⁰	23 V 50.94 3 + 3d ²	24 Cr 52.00 3 + 3 <i>d</i> ⁹ 312	25 Mn 54.94 2 + 3 <i>d</i> ⁵ 96	26 Fe 55.85 3 + 3d ⁵ 1043	27 C0 58.93 2 + 3d ⁷ 1390	²⁸ Ni ^{58.69} 2 + 3d ⁸ 629	²⁹ Cu ^{63.55} 2 + 3d ⁹	³⁰ Zn 65.39 2 + 3d ¹⁰	³¹ Ga ^{69.72} 3+3d ¹⁰	³² Ge 72.61	³³ As _{74.92}	³⁴ Se _{78.96}	³⁵ Br _{79.90}	³⁶ Kr ^{83.80}
³⁷ Rb ^{85.47} 1 + 5s ⁰	³⁸ Sr ^{87.62} 2 + 5s ⁰	39 ⋎ 88.91 3 + 4 <i>d</i> ⁰	⁴⁰ Zr 91.22 4 + 4d ⁰	⁴¹ Nb ^{92.91} 5 + 4d ⁰	⁴² Mo _{95.94} 5 + 4 <i>d</i> ¹	43 Tc 97.9	⁴⁴ Ru 101.1 3 + 4d⁵	⁴⁵ Rh ₁02.9 ȝ + 4d⁵	⁴⁶ Pd ^{106.4} 2 + 4 <i>d</i> ⁸	47 Ag 107.9 1 + 4 <i>d</i> 10	⁴⁸ Cd 112.4 2 + 4d ¹⁰	⁴⁹ In ^{114.8} 3 + 4d ¹⁰	⁵⁰ Sn ^{118.7} 4 + 4 <i>d</i> 10	51 Sb 121.8	52 Te 127.6	53 126.9	⁵⁴ Xe ^{131.3}
55 Cs 132.9 1 + 6 <i>s</i> º	⁵⁶ Ba ^{137.3} 2 + 6 <i>s</i> º	⁵⁷ La ^{138.9} 3 + 4/9	72 Hf 178.5 4 + 5d ⁰	⁷³ Ta ^{180.9} 5 + 5d ⁰	74W 183.8 6 + 5d ⁰	⁷⁵ Re ^{186.2} 4 + 5d ³	76 OS 190.2 3 + 5d ⁵	77 r 192.2 4 + 5ď ^s	⁷⁸ Pt 195.1 2 + 5d ⁸	⁷⁹ Au 197.0 1 + 5d ¹⁰	⁸⁰ Hg ^{200.6} 2+5d ¹⁰	81 T 204.4 3 + 5d ¹⁰	82 Pb 207.2 4 + 5d ¹⁰	⁸³ Bi 209.0	84 Po 209	85 At 210	86 R n 222
⁸⁷ Fr	⁸⁸ Ra	⁸⁹ Ac	\Box											_			
	2 + 7 <i>s</i> ^o Radioa	3 + 5 ^{re} active		⁵⁸ Ce 140.1 4 + 4f ⁰ 13	⁵⁹ Pr 140.9 3 + 4f ²	⁶⁰ Nd 144.2 3 + 4/ ⁸ 19	61 Pm 146	⁶² Sm 150.4 3 + 4f ^s 105	⁶³ Eu 152.0 2 + 4f7 90	64 Gd 157.3 3 + 4f ⁷ 292	65 Tb 158.9 3 + 4≉ 229 221	66 Dy 162.5 3 + 4f ⁹ 179 85	67 Ho 164.9 3 + 4f ¹⁰ 132 20	⁶⁸ Er 167.3 3 + 4f11 85 20	⁶⁹ Tm ^{168.9} 3 + 4f ¹² 56	70Yb 173.0 3 + 4f ¹³	⁷¹ Lu ^{175.0} 3 + 4f ¹⁴
BOLD	Diama Param Magne	gnet agnet etic atom		90 Th 232.0 4 + 5f ⁰	91 Pa 231.0 5 + 5₽	92 ∪ 238.0 4 + 5₽	93 Np 238.0 5 + 5f ²	94 Pu 244	95 Am 243	96 Cm 247	⁹⁷ Bk 2 ² 47	98 Cf 251	99ES	²⁵⁷	101Md 258	192 No 259	¹⁰³ Lr 280
	F	Ferromagr	net with T _o	> 290K		An	tiferromaç	gnet with T	Г _N > 290К			Antiferr	omagnet/	Ferromag	net with T _r	_N /T _c < 290	к
Pro	Prof. Dr. Olav Hellwia Useful ferromagnetic materials with large Tc 7 www.tu-chemnitz.de																

Which material has the highest Curie Temperature T_c?

A: Fe B: Co

C: Ni

- D: Fe_2O_3
- E: Co_{75%}Fe_{25%}

T_c of magnetic materials

The Curie temperature needs to be > 500 K

Co has the highest T_c of all magnetic materials

Which magnetic energy is the most short range?

- A: Zeeman energy
- **B:** Anisotropy Energy
- C: Demagnetization energy
- D: Exchange energy
- E: Stray field energy

Which magnetic energy is the most long range?

- A: Shape anisotropy energy
- B: Stray field energy
- C: Demagnetization energy
- D: all of the above
- E: none of the above

Which magnetic energy varies the most in strength across ferromagnetic materials?

- A: Zeeman energy
- **B:** Anisotropy Energy
- C: Demagnetization energy
- D: Exchange energy
- E: Stray field energy

How much vary stray fields, exchange and ansiotropy across useful magnetic materials?

	M_s stray/dem $({ m MA~m^{-1}})$	ag A exchange (pJ m ⁻¹)	K_1 anisotropy (kJ m ⁻³)	$E_{exchange} = A \left(\frac{\partial \theta}{\partial \theta}\right)^2$	
Ni ₈₀ Fe ₂₀	0.84	10	0.15	(cx)	$\Lambda / \Lambda /$
Fe	1.71	21	48		
Со	1.44	31	410	$E_{stray} = -\frac{1}{2}\vec{H}_{s}\cdot\vec{M}$	
CoPt	0.81	10	4900	2 2	\mathcal{A}
$Nd_2Fe_{14}B$	1.28	8	4900		
SmCo ₅	0.86	12	17 200		1
CrO ₂	0.39	4	25	$E_{\rm max} = K_{\rm m} \sin \theta^2$	
Fe ₃ O ₄	0.48	7	-13	anisotropy U	₩ V
BaFe ₁₂ O ₁₉	0.38	6	330		easy axis
Variation	magnetization	exchange stiffness	anisotropy (energy density)	$E_{magnetostatics} = -\frac{1}{2} \int_{sample} \vec{H}_{d} \cdot \vec{M} dV = -\frac{1}{2}$	$\int_{\text{sample}} N\vec{M}^2 dV = -\frac{1}{2}N\vec{M}^2 V$
across	less than 5	less than 10	up to 100 000		
materials			1		
	largest	variations in a	anisotropy		- 12

Prof. Dr. Olav Hellwig

Which ferromagnetic 3d element has in its single crystal ground state uniaxial magnetic anisotropy?

A: Fe

B: Co

C: Ni

D: all of the above

E: None of the above

Fe bulk

Co bulk

Ni bulk

Which of the following statements is true?

- A: The larger the exchange energy, the larger the domain wall width
- B: The larger the exchange energy, the shorter the domain wall width
- C: The larger the anisotropy energy, the larger the domain wall width
- D: The larger the stray field energy, the larger the domain wall width
- E: The larger the stray field energy, the shorter the domain wall width

Domain wall width and energy

walls
$$\sigma_w = exchange + anisotropy$$

= $\int_{-\infty}^{\infty} A\left(\frac{\partial \theta}{\partial x}\right)^2 + K \sin^2(\theta) dx$

Minimize the energy (exchange+anisotropy), No demag energy included in the domain wall

 $\sigma_w = 4\sqrt{AK}$

domain wall energy density

$$\theta(x) = \arctan[\sinh(\pi x / \delta_w)] + \pi / 2$$

and

How do we define where the domain wall ends?

anisotropy K (energy density) up to 100 000

The domain wall does not have a precisely defined width, since the direction of magnetization only approaches the easy axis asymptotically. Anisotropy of some sort is necessary for finite domain wall width.

Stray field or demagnetization energy triggers domain formation \rightarrow domain wall formation Exchange wants infinitely thick DW, anisotropy wants infinitely thin DW \rightarrow compromise

Prof. Dr. Olav Hellwig

Now take all three energies and compare

17

 $\delta_w = \pi \sqrt{A/K}$

domain wall width

www.tu-chemnitz.de

What energy dominates in the image? Why?

- A: Shape anisotropy energy
- B: Stray field energy
- C: Demagnetization energy
- D: all of the above
- E: none of the above

What energies determine the magnetic state in the image?

- A: Uniaxial anisotropy energy
- B: Stray field energy
- C: Exchange energy
- D: all of the above
- E: none of the above

What micromagnetic energies are considered in the Stoner Wohlfarth model?

A: external magnetic field and exchange energies

B: external magnetic field and stray field energies

C: external magnetic field and anisotropy energies

D: exchange and anisotropy energies

E: stray field and anisotropy energies

Stoner-Wohlfarth-Model

Simplest possible reversal: Consider only Zeeman and anisotropy energy Simplest analytical model that exhibits hysteresis, Stoner-Wohlfarth-Model

What assumptions go into the Stoner Wohlfarth model, as a macro spin model?

A: Exchange energy is neglected

- B: Exchange energy is infinitely strong
- C: Stray field energy is neglected
- D: Stray field energy is infinitely strong
- E: Both, B and C

At which angle of external field axis and anisotropy axis do we get the lowest reversal field in the Stoner Wohlfarth model?

- A: When the external field is applied along the easy axis
- B: When the external field is applied along the hard axis
- C: When the external field is applied at 45 degrees, i.e. exactly in between the easy axis and the hard axis
- D: When the external field is applied at 30 degrees

E: none of the above

Stoner-Wohlfarth-Model at arbitrary angles

Reversal movies for 0,15,30,45,60,75, 85 and 90 degrees

Which magnetic energy terms do they belong to ?

- 1. M
- 2. A
- 3. *J*
- 4. K
- 5. H

- A: Exchange energy
- B: Zeeman energy
- C: Anisotropy energy
- D: Stray field energy

long range, everything interacts, takes most computational resources in micro-magnetics

directionally varying energy, source is often the crystal structure

Prof. Dr. Olav Hellwig

Closer look at Anisotropy energy (biggest knob) (Exchange and stray field energy should be known)

26

www.tu-chemnitz.de

Micromagnetic Energies determining the magnetic state of a sample

(Exchange and stray field energy should be known)

Micromagnetic Energies determining the magnetic state of a sample

(Exchange and stray field energy should be known)

Which magnetic energy (energy density) terms do belong to which characteristic magnetic parameter

- 1. Exchange energy
- 2. Anisotropy energy
- 3. Demagnetization or stray field energy (shape anisotropy)

A: The magnetic hardness parameter κ (or Q-factor)

- B: The domain wall energy σ_w
- C: The exchange length I_{ex}

Magneto-crystalline anisotropy energy

(across all magnetic materials)

Table 7.1. Domain wall parameters for some ferromagnetic materials										
	M_s stray/den $({ m MA}~{ m m}^{-1})$	mag A exchange (pJ m ⁻¹)	K_1 anisotropy (kJ m $^{-3}$)	exchanges δ_w vs anisotr (nm) fac	ge Topy γ_w tor $(mJ m^{-2})$	anisotropy ex vs stray fields <i>K</i>	$\begin{array}{c} \text{xchange} \\ \text{vs} l_{ex} \\ \text{stray} \\ (nm) \end{array}$			
Ni ₈₀ Fe ₂₀	0.84	10	0.15	2000	0.01	0.01	3.4			
Fe	1.71	21	48	64	4.1	0.12	2.4			
Со	1.44	31	410	24	14.3	0.45	3.4			
CoPt	0.81	10	4900	4.5	28.0	2.47	3.5			
$Nd_2Fe_{14}B$	1.28	8	4900	3.9	25	1.54	1.9			
SmCo ₅	0.86	12	17 200	2.6	57.5	4.30	3.6			
CrO ₂	0.39	4	25	44.4	1.1	0.36	4.4			
Fe ₃ O ₄	0.48	7	-13	72.8	1.2	0.21	4.9			
BaFe ₁₂ O ₁₉	0.38	6	330	13.6	5.6	1.35	5.8			
	magnetization	exchange stiffness	anisotropy (energy density)	domain wall width	domain wall energy	hardness parameter	exchange length			
Variation across	less than 5	less than 10	up to 100 000	up to 1000	up to 6000	up to 500	~ factor 3			
materials			1	$\delta_{w} = \pi \sqrt{A/K}$	$\gamma_w = 4\sqrt{AK}$	$\kappa = \sqrt{ K_1 / \mu_0 M_s^2}$	$l \approx \sqrt{A/M}$			
	largest varia	exchange								
stray fiel	ld energy =									
shape anis	otropy energy			stray	field 🗲	- aniso	anisotropy			
Prof. Dr. Olav	v Hellwig	Size limit for single doma	in particles	30 www.tu-cher			emnitz.de			

Discussion about and feedback on the lecture recordings