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ABSTRACT

This paper is dedicated to a coevolutionary approach to the nu-
merical optimization of large facility layouts using genetic algo-
rithms. First we introduce a new way to code the relative positions
of the departments. We present improved mutation and crossover
operators for this problem. In order to cope with large problem
size, departments are clustered into groups. These groups evolve
in separate areas while position and size of these areas undergo an
evolution, too.

1. INTRODUCTION

One subproblem in factory planning consists in determining good
locations of a set of departments or manufacturing cells on a planar
site. This task is called facility layout problem (FLP). The objec-
tives shortly described by the word “good” are manifold. In addi-
tion many of them are of qualitative nature and it is not straight for-
ward to translate them to quantitatively measurable criteria. One
objective is certainly to minimize the material handling cost. Yet,
manpower requirements, work-in-process inventory, flow of infor-
mation etc. play an important role, too. Yet, in all cases the starting
assumption is that the proximity between certain departments is
morefavorable than others. The aim is to arrange the departments
in such a way that the desired proximity is satisfied.

For several decades there has been research on this subject.
[1] contains a detailed review of the different formulations of the
FLP and the variety of algorithms. Some additional recent refer-
ences can be found in the introduction of [2]. One can roughly dis-
tinguish between three types of problem formulations - assigning
departments to a finite number of locations, subdividing the avail-
able floor area successively and placing departments of given size
arbitrarily on the shop floor. This last formulation which yields a
mixed integer programming problem (MIP) forms the base for our
considerations.

All these approaches lead to combinatorial optimization prob-
lems and they share the difficulty that the computational complex-
ity grows very rapidly with the number of departments. Hence
many suggested algorithms for treating these problems try to find
heuristically good solutions instead of aiming at global optimal-
ity of the solution. Evolutionary methods like genetic algorithms
(GA) have successfully been applied in this context, see e.g. [3],
[4] or [5].

This research was supported by DFG research project SFB 467
“Wandlungsfähige Unternehmensstrukturen f¨ur die variantenreiche Serien-
produktion”

In this work we want to present a new coding and genetic op-
erators for handling the relative position of departments and a co-
evolutionary approach in order to attack large scale FLP’s.

The remainder of this paper is organized as follows. In section
2 we describe our MIP formulation. Section 3 is dedicated to the
genetic operators and the coevolutionary algorithm. Finally, we
discuss the performance of our genetic operators and the numerical
results of the coevolutionary algorithm in section 4.

2. MIP FORMULATION

The approximation of departments, floor areas and others by rect-
angles is a popular method, see e.g. [5] or [2]. In addition we
assume that their sides are parallel to the axis of our coordinate
system in the plane and their dimensions are given in advance.
Denoting a rectangle byA � R

2 we introduce the following nota-
tions:

I = f1; : : : ; Ng index set of all rectangles

i; j 2 I indices for the rectangles

li 2 R+ length of the long side

si 2 R+ length of the short side

(Xi; Yi) 2 R
2 center point coordinates

Oi 2 f0; 1g orientation vertical/horizontal

MX
i 2 f0; 1g flip up/down

MY
i 2 f0; 1g flip left/right

Let i� be the index of the total available floor area. Later we want
to place departments inside of subareas of the floor area, i.e. we
require that certain rectangles are completely contained in other
rectangles (which themselves could be inside of a third rectangle).
In order to formalize this we introduce the following map on the
index set of all rectanglesP : I ! I, i.e. i 7! P (i), with the
following meaning. For eachi 2 I the numberP (i) gives the
index of a rectangle in whichAi shall be contained. Fori� we
defineP (i�) = i�. In this way we define a hierarchical structure
of containment relations. Most of the time one will have simply
P (i) = i�. Furthermore we will distinguish two types of rectan-
gles – movable or fixed. For this purpose we define two index sets
Im � I andI f � I with Im \ I f = ; andIm [ I f = I, wherem
stands for movable andf for fixed. Obviously, it should bei� 2 I f

andi 2 I f will meanAi is fixed toAP (i).



Depending on the containment structureP and the setsIm and
I f one can determine whether the above defined quantities will be
variables or constants. Let us use the following notation

P Æk(i) = P (� � �P (i) � � �)| {z }
k times

:

Then we can distinguish the following three cases.

1. If i 2 Im then certainlyXi,Yi andOi are variables. Whether
there is a need for the variablesMX

i andMY
i depends on

the internal structure ofAi, i.e. on theAj ’s with P Æk(j) =
i for somek.

2. If i 2 I f andP Æk(i) 2 I f for all k then all quantities are
constants and there is no need forMX

i andMY
i .

3. If i 2 I f andP Æk(i) 2 Im for somek then setk� =

minfk : P Æk(i) 2 Img and j = P Æk�(i). In this case
Xi, Yi andOi are variables depending on theXj , Yj , Oj ,
MX

j andMY
j . This will be investigated in the following

paragraph.

In order to describe the transformation of a fixed rectangleAi at-
tached to a movable oneAj we need constants for modeling this
dependency:

xji ; y
j
i 2 R relative coordinates ofAi with respect

toAj (long side corresponds to x-axis)

oji 2 f0; 1g relative orientation ofAi with respect
to Aj (1 corresponds to parallel long
sides)

Then we obtain the center point coordinates from the relative co-
ordinates by the linear transformation�

Xi

Yi

�
=

�
Xj

Yj

�
+M

�
xji
yji

�
; (1)

with an orthonormal(2� 2)-matrixM which can be decomposed
in the following way

M =

�
Uj 1�MY

j 1
1 �MX

j Vj 1

�0@ 1 1
1 �1

�1 0

1
A :

This is more advantageous as the variablesUj andVj take values
in f0; 1g only. One can verify that the constraints

0 � Oj +MY
j � Uj (2)

0 � Oj �MY
j + Uj (3)

0 � �Oj +MY
j + Uj (4)

Oj +MY
j + Uj � 2 (5)

Oj +MX
j � Vj � 1 (6)

Oj �MX
j + Vj � 1 (7)

�OjM
X
j + Vj � 1 (8)

1 � Oj +MX
j + Vj (9)

ensure the correct assignment of entries in the matricesM. The
orientation ofAi depends only on the orientation of theAj and its
relative orientation

Oi =

�
Oj for oji = 1

1�Oj for oji = 0
: (10)

If P (i) = j we can express the relationAi � Aj by the following
four inequalities

Xj �
lj
2
Oj �

sj
2
(1�Oj) � Xi �

li
2
Oi �

si
2
(1�Oi); (11)

Xi +
li
2
Oi +

si
2
(1 �Oi) � Xj +

lj
2
Oj +

sj
2
(1�Oj); (12)

Yj �
sj
2
Oj �

lj
2
(1�Oj) � Yi �

si
2
Oi �

li
2
(1�Oi); (13)

Yi +
si
2
Oi +

li
2
(1 �Oi) � Yj +

sj
2
Oj +

lj
2
(1�Oj): (14)

Two non-overlapping rectanglesAi andAj must be separated by a
vertical or horizontal line. The first MIP for the FLP due to [6] pro-
poses four binary variables for each non-overlapping relation. In
[7] one optimized this approach to improve the performance. In [8]
and [5] one uses a formulation which needs three binary variables
per non-overlapping relation. We will propose an model using two
variables which is superior by almost an order of magnitude, see
table 1. We introduce

SDij 2 f0; 1g line direction (vertical/horizontal)

SOij 2 f0; 1g order ofAi andAj .

The setting(SDij ; S
O
ij) = (0; 0) stands forAi left of Aj , (0; 1) for

Ai right of Aj , (1; 0) for Ai belowAj and (1; 1) for Ai above
Aj , respectively. In order to avoid redundant variables we require
i > j. LetL = maxi li. Using the four linear expressions

E
(1)
ij = L (SDij + SOij ) (15)

E
(2)
ij = L (1 + SDij � SOij ) (16)

E
(3)
ij = L (1� SDij + SOij ) (17)

E
(4)
ij = L (2� SDij � SOij ) (18)

where each takes the value zero for exactly one setting of(SDij ; S
O
ij)

we can derive the necessary inequalities

Xi+
li
2
Oi+

si
2
(1�Oi) � Xj�

lj
2
Oj�

sj
2
(1�Oj)+E

(1)
ij ;

(19)

Xj+
lj
2
Oj+

sj
2
(1�Oj) � Xi�

li
2
Oi�

si
2
(1�Oi)+E

(2)
ij ;

(20)

Yi+
si
2
Oi+

li
2
(1�Oi) � Yj�

sj
2
Oj�

lj
2
(1�Oj)+E

(3)
ij ;

(21)

Yj+
sj
2
Oj+

lj
2
(1�Oj) � Yi�

si
2
Oi�

li
2
(1�Oi)+E

(4)
ij :

(22)
We denote byIno � f(i; j) : i > j; i; j 2 Ig the set of the
non-overlapping relations which are necessary for the model. The
aim is to keepIno as small as possible. For example consider
the following situation:A2 � A1 = Ai� , A3 � A1, A4 �
A2, A5 � A2, A6 � A3 and A7 � A3. In order to have
the non-overlapping betweenA2, A3 andA4; : : : ; A7 it suffices
Ino = f(3; 2); (5; 4); (7; 6)g. The relations(6; 4); (6; 5); (7; 4)
and(7; 5) are automatically true because of the containment and
(3; 2).

The objective is to minimize the distances between different
points. We will call them IO-points. They are attached to some
floor area or a department, i.e. a rectangle may possess several
IO-points. We use the following notation:



branching automatic strong
model two three two three

b&b tree size (�103) 11:5 47:9 5 31
computation time in s 25.5 187.6 46.3 512

Table 1: Comparison of our model (two) with the model (three)
from [8] or [5] (FLP with 6 departments from [8]).

I� = f1; : : : ; N�g set of indices for IO-points,

�; � 2 I� indices for IO-points,

(x�i� ; y
�i
� ) 2 R

2 relative coordinates wit respect to
Ai, i 2 Im,

(X�

�; Y
�

� ) 2 R
2 coordinates of the�-th IO-point

which are either constant (IO-point
is attached toAi� or is variable sat-
isfying e.g. equation (1) or is iden-
tical with center point ofAi),

ÆX�

�� ; ÆY
�

�� 2 R+ horizontal and vertical distance be-
tween the�-th and�-th IO-point,

(w��)�;�2I�
�>�

weights for the distances.

Given an existing layout it might be necessary to consider the cost
of changing the layout at the same time. For this purpose we in-
troduce for alli 2 Im:

X
(0)
i ; Y

(0)
i ; O

(0)
i initial position and orientation,

Mi 2 f0; 1g 1 if Xi,Yi orOi have changed from
the initial layout or ifMX

i or MY
i

equals to1,

(wi)i2Im weights for movingAi.

With this notation the objective is to minimize

min

0
B@ X

�;�2I�

�>�

w��(ÆX
�

�� + ÆY �

��) +
X
i2Im

wiMi

1
CA (23)

where the following further constraints have to be satisfied

X�

� �X�

� � ÆX�

�� (24)

X�

� �X�

� � ÆX�

�� (25)

Y �

� � Y �

� � ÆY �

�� (26)

Y �

� � Y �

� � ÆY �

�� (27)

for all �; � 2 I� with � > � andw�� 6= 0 and

Xi �X
(0)
i � LMi (28)

X
(0)
i �Xi � LMi (29)

Yi � Y
(0)
i � LMi (30)

Y
(0)
i � Yi � LMi (31)

Oi �O
(0)
i � Mi (32)

O
(0)
i �Oi � Mi (33)

MX
i � Mi (34)

MY
i � Mi (35)

for all i 2 Im andwi 6= 0.

3. THE COEVOLUTIONARY GA

The goal to find an optimal solution of the mathematical model
introduced in section 2 and to prove its optimality can be achieved
only for a small number of departments (up to� 7). This is due
to the quadratic increase in the number of binary variablesSDij and
SOij . That is why various heuristic methods have been developed in
order to find systematically at least suboptimal solutions. They try
to fix some of the binary variables. One such approach are genetic
algorithms, see e.g. [9], [10], [11] (quadratic assignment problem),
[12], [3] (slicing tree representation), [5], [4] (MIP), [13] (slicing
tree and MIP).

3.1. Coding

In [5] the 0-1-sequence for setting the binary variables is used as
genetic code. Standard crossover and mutation operators are ap-
plied. This generates subsequently many infeasible genes as pos-
sible settings do not satisfy the transitivity of relative positions. In
order to avoid producing too many infeasible genes we introduce
a coding and operators which do not leave the space of genes sat-
isfying transitivity.

We suppose that the problem to solve involves the rectangles
with indices from the index setIgk � I where the letterg stands
for “group” andk = 1; 2; : : : is the index of the group. LetNg

k =
#Igk be the number of the involved rectangles. Denote by� =
1; : : : ; Np

k the index of an individual within a population ofNp
k

individuals. Let
 = 1; 2; : : : be the index of the generation. The
�-th individual of thek-th group in generation
 will be represented
by

I
(
)
k;� =

 
(ix1 ; : : : ; i

x
N
g

k
); (iy1 ; : : : ; i

y

N
g

k

); fbijg i;j2Ig
k

i>j

!
:

Thebij 2 f0; 1g, with i; j 2 Igk andi > j, represent values of the
binary variablesSDij , i.e. whether there is a vertical or horizontal
separating line betweenAi andAj . The two vectors(ix1 ; : : : ; i

x
N
g

k

)

and(iy1 ; : : : ; i
y

N
g

k

) are permutations of the elements ofIgk and they

represent the order of thex- andy-coordinates of the midpoints.

Given anI(
)k;� we set theSDij andSOij with i; j 2 Igk andi > j

in the following way. For each pair of indices0 � j1 < j2 � N g
k

we check the following alternatives. Setix = max(ixj1 ; i
x
j2
) and

jx = min(ixj1 ; i
x
j2
). If bixjx = 0 holds then set

SDixjx = 0 (36)

SOixjx =

�
0 if ix = ixj1
1 if ix = ixj2

: (37)

Note that if bixjx = 1 the orderixj1 , ixj2 does not enter in the
problem formulation. Hence the final order of the x-coordinates of
Aix

j1
andAix

j2
is not necessarilyXix

j1
� Xix

j2
. Analogously, we

setiy = max(iyj1 ; i
y
j2
) andjy = min(iyj1 ; i

y
j2
). If biyjy = 1 is

true, then we assign

SDiyjy = 1 (38)

SOiyjy =

�
0 if iy = iyj1
1 if iy = iyj2

: (39)



3.2. Genetic operators

In [9] three different crossover operators for permutations are pre-
sented – partially matched, order and cycle crossover. For our
genetic algorithm we use a version of the order crossover. After
selecting two parent genesI(
)k;�1

andI(
)k;�2
let us consider the parts

of the genes representing the x- and y-order. Take e.g.

(ix1;�1 ; : : : ; i
x
N
g

k
;�1
) and (ix1;�2 ; : : : ; i

x
N
g

k
;�2
)

where we add the number of the individual as a second subindex.
We select randomly two cut positionsc1; c2 2 f1; : : : ; N g

kg with
c1 � c2. Then we construct two new genes from the two selected
genes. First we fill the position fromc1 to c2 with the original
parts of the sequence

(: : : ; ixc1;�1 ; : : : ; i
x
c2;�1

; : : :); (: : : ; ixc1;�2 ; : : : ; i
x
c2;�2 ; : : :):

Then the position beforec1 and afterc2 are filled with with the
numbers from the other parent which are not contained in the al-
ready filled part. While filling we keep the order given by the
parent where we take the elements from. In terms of the notation
above this means e.g. for the first offspring gene

(~ix1;�2 ; : : : ;
~ixc1�1;�2 ;

ixc1;�1 ; : : : ; i
x
c2;�1 ;

~ixc1;�2 ; : : : ;
~ix
N
g

k
�c2+c1�1;�2

) with

f~ix1;�2 ; : : : ;
~ixNg

k
�c2+c1�1;�2

g \ fixc1;�1 ; : : : ; i
x
c2;�1g = ;

and the mappingj 7! f(j) defined by~ixj;�2 = ixf(j);�2 is strictly
increasing. In the same way the crossover is defined for the y-
order. The motivation for this definition is the idea that we wish
to keep the part that is located between the cuts hoping that it con-
tributes to a good solution and arranging the remaining using the
order given by the other parent.

For mutation a single parent is randomly selected. Then the
mutation operator for each of the parts(ix1 ; : : : ; i

x
N
g

k

) and(iy1 ; : : : ; i
y

N
g

k

)

just exchanges two randomly chosen elements.
The more complicate part is the modification offbijgi;j which

represents the decision whether to have a vertical or horizontal sep-
arating line. As we did not find a method which could be geomet-
rically motivated we decided to use standard crossover with two
cut positions and standard mutation. Yet, in addition we apply an
improvement strategy. First, we fix the variablesSDij andSOij for
the given individualI(
)k;� according to (36) – (39) and solve the
remaining MIP (1) – (35).

evaluate (I(
)k;�)
for all i; j 2 Igk with i > j

fix SDij andSOij
endfor
solve remaining MIP
return solution

Next, we update(ix1 ; : : : ; i
x
N
g

k

) and (iy1 ; : : : ; i
y

N
g

k

) by sorting the
center point coordinates of the obtained solution. Then we check
for all SDij whether they can be changed without violating a con-
straint in the current solution.

change is possible (SDij )
if SDij == 0 (x-direction)

if jYi � Yj j � siOi=2 + li(1�Oi)=2 +
sjOj=2 + lj(1�Oj)=2

return true
else

return false
endif

else (y-direction)
if jXi �Xj j � liOi=2 + si(1�Oi)=2 +

ljOj=2 + sj(1�Oj)=2
return true

else
return false

endif
endif

If possible we change the variableSDij . These actions are repeated
until the objective value does not decrease further. Summarizing
we have sketched our improvement strategy below.

improve (I(
)k;�)
while the objective value decreases

evaluate (I(
)k;�)
obtain(ix1 ; : : : ; i

x
N
g

k

) and(iy1 ; : : : ; i
y

N
g

k

)

from the solution
for all i; j 2 Igk with i > j

if change is possible (SDij )
if SDij == 0

bij = 1
else

bij = 0
endif

endif
endfor

endwhile

return I(
)k;� with smallest objective value

Using these operators our GA creates a new generation byNcr

crossovers,Nmu mutations with mutation rateRmu and copying
theN co best individuals which results in a population size of2Ncr+
Nmu+N co. The selection accepts individuals with objective value
above average with a probability ofPac. The GA terminates if the
average objective values has not changed more thanMch or the
best values has not changed for the lastNnc generations or a max-
imal numberMge of generations has been exceeded.

genetic algorithm
initialize population
do


 = 
 + 1
for 1; : : : ; N cr

select parents andcrossover
endfor
for 1; : : : ; Nmu

select parent andmutate
endfor
copyN co best individuals

while change of average is larger thanMch,
best individual has changed during the
lastN nc generations and
 �Mge



3.3. Coevolution

For large FLP’s the above described GA fails. Convergence takes
very long. Hence it is necessary to treat such FLP’s differently.
Dividing large problems into smaller ones is a popular method,
see e.g. [14]. By quantitative or qualitative method we can form
groups of departments which shall be placed together. One has
to provide an area for each group of departments and one has to
determine the layout for each group within these areas. Already
in [15] one suggests to approach the FLP in a hierarchical man-
ner by a divide-and-conquer strategy. They formed groups, com-
puted the layout for each of them and placed the groups in a final
step. We propose a coevolutionary method of iterative nature. In
a first step we find initial layouts for each group. Next, we fit a
rectangle around each group and enlarge each side by a factorZk
giving more space to each group for possible further change. This
allows e.g. that a group becomes more oblong during the subse-
quent optimization. Next, we arrange these rectangles using again
a genetic algorithm. In the first run we approximate the IO-points
by the central points of the rectangles. Afterwards it is necessary
to consider all relative positions of the IO-points of the group. Ex-
periments with continued approximation by the central point did
not show satisfactory results.

Initial group areas (246 sec.)

Group 1

Group 2

Group 3

Group 4

Group 5 Group 6

Group 7 Group 8

Figure 1: As an illustrative example we take a FLP with 62 de-
partments clustered into 8 groups. The group areas in this initial
layout are almost all square shaped.

Keeping the external IO-points for all groups constant each
group passes a short evolution by a GA. Observe that the objec-
tive function does not only include the weighted distances between
the group members. The weighted distances to the constant IO-
points outside the group give a contribution, too. It is obvious that
these GA’s can be computed in parallel. For each group we decide
whether we changeZk for the next iteration. For this purpose we
compare the new dimensions to the old ones. If the proportional
increase

max

�
max(lnew � lold; 0)

lold
;
max(snew � sold; 0)

sold

�

Group areas after 4 iterations (5273 sec.)

Group 1

Group 2 Group 3Group 4Group 5

Group 6

Group 7
Group 8

Figure 2: This layout of the group areas after 4 iterations illustrates
how the shape of the group areas may change, see e.g. group 2 and
5.

exceeds a certain percentageP+ of Zk thenZk is multiplied by a
factorF > 1. If it remains belowP�Zk thenZk is divided by the
same factorF . Consequently, if the shape of the needed area does
not change the provided group area becomes tighter. We stop the
iteration when all group areas are close to the needed area of the
group. The algorithm is summarized below.

coevolutionary algorithm
for all groupsk

genetic algorithm for groupk
fit a group area around obtained layout
enlarge the area byZk

endfor
do

genetic algorithm for group areas
(treat group areas as departments with
several IO-points)
for all k ? can be done simultaneously?

genetic algorithm for groupk
(placement is restricted to the group area
and all external IO-points are fixed)
fit a new group area around the group
if ratio of the sides has changed much

increaseZk
else

decreaseZk
endif
enlarge the new group area byZk

endfor
while there is still a “large”Zk for somek

or the average of theZk ’s is large



Iteration 5, best individual for group 1 (5343 sec.)

D1

D2

D3

D4

D5

D6

D7
D8

D9

D10
D11

D12

D13

D14

D15

D16

D17

D18

D19

D20
D21

D22

D23

D24

D25

D26

D27
D28

D29

D30

D31

D32

D33

D34

D35

D36

D37

D38

D39

D40

D41

D42

D43

D44

D45

D46

D47

D48

D49

D50

D51

D52

D53

D54

D55

D56

D57

D58

D59

D60

D61

D62

Iteration 5, best individual for group 2 (5408 sec.)

D1

D2

D3

D4

D5

D6

D7
D8

D9

D10
D11

D12

D13

D14

D15

D16

D17

D18

D19

D20
D21

D22

D23

D24D25

D26

D27
D28

D29

D30

D31

D32

D33

D34

D35

D36

D37

D38

D39

D40

D41

D42

D43

D44

D45

D46

D47

D48

D49

D50

D51

D52

D53

D54

D55

D56

D57

D58

D59

D60

D61

D62

Figure 3: Keeping the external IO-Points (white departments) con-
stant each group (gray departments) passes an evolution. These
evolutions can be computed in parallel. The figure shows the best
individuals of the fifth iteration for group 1 and 2.

4. RESULTS AND CONCLUSIONS

First let us discuss the quality of our coding and the genetic op-
erators. Applying them to the FLP with 8 departments from [8]
we obtained satisfactory results. Running the deterministic algo-
rithm (31 h 30 min on a Pentium III 866 MHz and memory use
ca. 1.5 GB) it has been proved that the optimal objective value
is 8778:3. Running our genetic algorithm 13 times the optimal
objective value was reached three times. In the worst case the ob-
jective value was9106:6 which lies just3:7% above the optimum.
In all cases computations took less than 10 minutes (on a Pentium
II 400 MHz. Also for the FLP with 10 and 12 departments our ap-

proach shows very good results. Table 2 compares our best results
to the best known from [8] and [5].

N Four-Step GA 1998 GA 2002

8 10 777:1 9 174:8 8 778:3
10 15 878:3 19 777:3 15 694:5
12 41 267:5 45 353:5 37 396:1

Table 2: Minimal objective value for three FLP’s from [8] which
are reported in [8] (Four-Step) and [5] (GA 1998) in comparison
with our best results (GA 2002).

For testing the coevolutionary GA we created a random exam-
ple with 62 departments (FLP62) of different shapes. For simplic-
ity we placed one IO-point in the center of each department. The
weightsw�� in (23) were generated randomly, too. There is no
initial layout. Hence, all the weightswi are zero. A table with all
quantities can be obtained from the authors1.

In order to find a grouping we implemented the heuristic group-
ing algorithm from [16] which uses only simple exchange opera-
tions. A similar clustering algorithm was applied in [15]. A GA
proposed in [17] can generate improved groupings. The aim is
to arrange the departments into groups minimizing the sum of the
weights between departments belonging to different groups. In
addition, one restricts the size of each group to a limit. We have
tested an example with 6 groups with a maximum of 11 depart-
ments each and, secondly, 8 groups with at most 8 departments.

For the parameters introduced in section 3.2 and 3.3 we used
the following settings:Rmu = 10%, P ac = 20%, N nc = 5,
M ch = 0:5%

N cr Nmu N co M ge

first area layout 20 5 5 15
area layout 0 5 5 1
group layouts 12 3 3 3

and initial enlargement factorZk = 60%, increase limitP+ =
75%, decrease limitP� = 50% and change factorF = 1:5.
There is always a conflict between good exploration of the search
space and fast computation. The first requires large populations
which again needs more time for computation. Certainly, these
parameters can still be optimized.

Running the two examples with our coevolutionary algorithm
on a PC (Pentium II 400 MHz) 10 times we obtained the following
results:

6 groups 8 groups

best objective 4 167 956:8 4 296 388:2
worst objective 4 387 725:0 4 550 281:4
average 4 304 970:7 4 411 970:2
average time 5 h 30 min 6 h 23 min
worst time 7h 34 min 10 h 57 min

It turned out that the computations treating the part where the
whole groups are moved are very time consuming. Here not only
the orientation also the different reflection symmetries have to be
considered. This is the reason why the six group setting performed
in general faster than the eight group one.

1email: tmd@ipa.fhg.de



Iterations 9, Objective Value: 4167956.8 (11812 sec.)
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Figure 4: Best solution for FLP62 clustered into 6 groups obtained
by our coevolutionary GA.

Iterations 35, Objective Value: 4296388.2 (39436 sec.)
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Figure 5: Best solution for FLP62 clustered into 8 groups obtained
by our coevolutionary GA.

We hoped to get some reference solutions by saving incumbent
solutions of a branch and bound solving FLP62. Yet, even after
one week of computation on a PC with a Pentium III 866 MHz
there was no result. A simple GA coped much better with the
size of the problem. It found a solution (4 221 911:0) in the same
range as the coevolutionary GA. Yet, it took more than one week

of computation.

62 Departments, Objective Value: 4221911.0

D1

D2

D3

D4

D5

D6

D7

D8

D9

D10

D11

D12

D13

D14

D15

D16

D17
D18

D19

D20D21

D22

D23

D24

D25

D26 D27

D28

D29

D30

D31

D32

D33

D34

D35

D36

D37

D38

D39

D40

D41

D42

D43

D44

D45

D46

D47

D48

D49

D50

D51

D52

D53

D54

D55

D56
D57

D58

D59

D60

D61

D62

Figure 6: Solution for FLP62 from a single run of a simple GA
which took 9 days an 18 hours on a PC with a Pentium II 400
MHz.

Summarizing, we can conclude that the proposed coevolution-
ary GA opens up the possibility to find good solutions for large
FLP’s within some hours where global optimization algorithms
fail. In addition there is still a high potential for further compu-
tational acceleration by parallelization.
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