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Abstract

We consider simple extended dynamical systems with quenched disorder. It is shown
that these systems exhibit anomalous transport properties such as the total sup-
pression of chaotic diffusion and anomalous drift. The relation to random walks in
random environments, in particular to the Sinai model, explains also the occurence
of ageing in such dynamical systems. Anomalous transport is explained by spectral
properties of corresponding propagators and by escape rates in these systems. For
special cases we provide a connection to quantum mechanical tight-binding models
and Anderson localization. New classes of anomalous transport behavior with clear
deviations from the behavior of Sinai type are found for generalizations of these
models.
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1 Introduction

Chaotic transport is nowadays a well established research field in nonlinear
dynamics [1] [2] with applications in many branches of physics. Examples are
ionization processes in atomic physics, tracer diffusion in hydrodynamics, or
electron transport in solid state physics. Recently this field found renewed
interest also from the fundamental point of view of non-equilibrium statis-
tical mechanics. The key concepts for the characterization of such systems
are spectra of Lyapunov exponents, various dynamical entropies, and fractal
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dimensions of strange attractors or repellers in phase space and their connec-
tions with transport coefficients and escape rates [3] [4]. Most investigations
considered systems where phase space or real space is infinitely extended with
a continuous or discrete translational symmetry. The latter allows the reduc-
tion of the problem to a unit cell leading to compact phase spaces, typically
a many-dimensional torus. Clearly these are limiting cases, and one wonders
what happens for systems with broken translational invariance. In the follow-
ing we treat examples, where order in this sense is not present, but the other
extreme is prevailing, namely full disorder. Disordered systems are usually
considered as a branch of statistical physics or solid state physics [5] with con-
cepts and methods very different from the ones in dynamical systems theory.
The model classes considered below, suggest that ageing phenomena and dis-
order induced anomalous transport are phenomena that arise very frequently
also in disordered dynamical systems. We will also see how the above men-
tioned characteristics of dynamical systems reflect these disorder phenomena.
The paper is organized as follows. In Section 2 we explain how chaotic diffu-
sion is suppressed in dynamical systems defined by disordered iterated maps
in one dimension and for area-preserving maps. In Section 3 it is argued that
such systems exhibit phase-transition phenomena and that they are among the
simplest to show non-trivial ageing behavior, a phenomenon which is usually
studied in disordered many-particle systems. Section 4 provides insight into
the anomalous transport properties through the spectral properties of corre-
sponding propagators, thereby making also a connection to the escape rate
formalism for dynamical systems. In special cases the problem is mapped to
a quantum mechanical tight-binding model exhibiting Anderson localization.
Finally, in Section 5 we introduce further extensions of the treated systems
resulting in new classes of anomalous behavior and give some perspectives for
future research.

2 Suppression of Chaotic Diffusion by Quenched Disorder

The simplest disordered dynamical systems are those with one or two degrees
of freedom with disorder in the environment. An example is the Hamiltonian
motion of a point particle in a two-dimensional disordered potential consist-
ing of hard discs (Lorentz gas [6]) or smoothed version thereof. The periodic
counterparts of these models have received much experimental and theoretical
attention in connection with mesoscopic transport in quantum dot lattices [7]
[8]. There in the spirit of [9] the importance of classical phase space struc-
tures and chaotic diffusion was realized [8]. Here we will concentrate first on
dissipative systems which may also show chaotic transport. A simple much
studied example is the damped motion of a periodically driven particle in a
periodic potential. This provides e.g. a model for superionic conductors in an
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external field and currently finds renewed interest in the context of ratchet
physics. Simplified versions which are assumed to capture essential aspects of
these systems are one-dimensional iterated maps [10]-[13]. While the periodic-
ity in the equations of motion allows for the application of advanced methods
such as periodic orbit theory, the thermodynamic formalism, or Levy flight
statistics [16]-[22], it is clearly of much greater importance to understand the
effects of static disorder in such systems. From the physics of disordered sys-
tems, it is known that static or quenched randomness may drastically alter
macroscopic quantities such as transport coefficients. In the following we will
first report on such an effect for dynamical systems, namely the total suppres-
sion of normal or anomalous chaotic diffusion by quenched randomness in the
equations of motion. We will show that this can occur in both, dissipative
and Hamiltonian systems. This turns out to be a non-trivial effect, since the
mean-square displacement will remain finite, although chaotic transport is not
inhibited locally.

2.1 One-dimensional iterated maps with disorder

Let us first concentrate on one-dimensional non-invertible maps of the type
studied in [10]-[16]. They have the general form xt+1 = f(xt) = xt + F (xt),
with F (x) periodic in x. The periodicity interval, which we set equal to one,
i.e. F (x) = F (x+1), defines cells or half open intervals Ai = [i, i+1), i ∈ Z , on
the real axis. We will modify these dynamical systems by randomly changing
F (x) in each cell Ai to a function F (i)(x) resulting in

xt+1 = xt + F
(i)(xt) (1)

for xt ∈ Ai. This corresponds to a random variation in space of the driving
force felt by the particle. A natural choice for F (i)(x) consists of random shifts
of F

F (i)(x) = F (x) + (i). (2)

In order to avoid complications connected with a global bias we assume for
the moment the symmetry F (−x) = −F (x), and further that the (i) are
independent, identically distributed (i.i.d.) random variables with a symmet-
ric distribution function p( ) = p(− ) implying (i) (j) ∝ δij and (i) = 0.
Through the cell index i, defined as i = [x], the largest integer smaller than
x, the term (i) is recognized as piecewise constant random function of x. In
contrast to previous studies [10], where time-dependent noise was added to
the deterministic dynamics, the random term (i) remains constant in time,
Eq.(1) is still deterministic, it describes a dynamical system with quenched
randomness.
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Fig. 1. (a) Simple piecewise linear maps corresponding to a periodic (dashed) and
a random driving ’force’ (bold). (b) The mean-square displacement σ2(t) increases
linearly for the former (dashed line) and saturates in the latter case as shown for
several disorder realizations (full lines: for (i) = ±1/2, dot-dashed graphs: (i)
equally distributed in (−1/2,+1/2)). There exist environments where a first con-
stant level is observed only after more than t = 106 iterations (0.5 . . . 1.0× 107 for
the second graph from the top).

Let us now investigate the effect of this static randomness first for the sim-
plest maps which in the absence of disorder ( (i) = 0) exhibit chaotic diffu-
sion. These are systems where F (x) varies linearly in each cell, i.e. F (x) =
a{x} − a/2 with {x} = x − [x]. Since the slope of f(x) is a + 1 these maps
are chaotic for a > 0 and show chaotic diffusion for a > 1. The dashed
graph in Fig.1(a) is an example with a = 3. The diffusive motion for this
ordered case is verified by the linear increase of the mean-square displacement
σ2(t) = x2t − xt

2 = 2Dt with the correct diffusion constant D = 1/4 [11]
(dashed straight line in Fig.1(b)). This and the following results for σ2(t) were
obtained numerically by iterating ensembles of 2 × 104 points (initially dis-
tributed homogeneously or inhomogeneously in one cell) for 106 (occasionally
107) time steps. An example of a map with binary disorder, (i) = ±1/2 in
Eq.(2), is shown as full line in Fig.1(a). Now, with disorder (i) = 0, a very
different behavior is observed: σ2(t) saturates and remains bounded for large
times. As is seen from Fig.1(b) this is true for discrete random variations as
well as for continuously distributed random variables (i). We emphasize that
for both cases there exists no obvious reason why the spreading of the distri-
bution ρ(x, t) should be limited because the a priory probability for reaching
one of the neighboring cells is always finite. More explicitly, independent of
the chosen sequence (i), a fraction p = 1/4 of a homogeneous distribution in
some cell Ai is always transferred to the right neighboring cell Ai+1, the same
fraction to the left cell Ai−1, and one quarter remains within the cell Ai. From
this point of view there is no difference between the homogeneous situation
( (i) = 0) and the inhomogeneous case ( (i) = 0). The randomness affects only
the last quarter, which is mapped into one or both of the next-nearest cells
Ai±2. Note also that the degree of chaoticity as measured by the Lyapunov
exponent (Fig.1: λ = ln 4) is not altered by the random shifts.
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The explanation of this localization effect in the case of quenched randomness
follows from the following connection. For the map f(x) with discrete random
shifts (i) ∈ {+1/2,−1/2} as in Fig.1a), the cells Ai define a (generating)
Markov partition [23][3][4]. This implies that the evolution of piecewise con-
stant distributions ρ(x, t) (constant in the cells Ai) is fully equivalent to a
Markov process, i.e. the content πi(t) =

i+1
i ρ(x, t) dx of cell Ai at time t is

iterated according to

πj(t+ 1) =
i

πi(t)pij. (3)

For the above piecewise linear map with (i) = ±1/2 the only non-zero transi-
tion probabilities pij are given by pii = pi,i±1 = 1/4 and pi,i±2 = (1/2± (i))/4.
In the following we call this map of Fig.1(a) a map with topological disorder,
because in the associated Markov model all non-zero transition probabilities
are equal and thus the full information about the disorder is contained alone
in the connectivity of the Markov model, or in technical terms, the adja-
cency matrix of the Markov process. The results of Fig.1 were also checked
by iterating Eq.(3) with these transition probabilities. Such a model defines
a discrete random walk in a locally asymmetric random environment. The
above localization effect, i.e. σ2(t) remaining finite for t → ∞, is known as
Golosov phenomenon in the random walk literature [24]. Inspired by Sinai’s
work [25] it was proven rigorously for random systems with only nearest neigh-
bor transitions by Golosov [26]. Reversing the above arguments which led us
from iterated maps to random walks, it is obvious that also for the latter
systems there exist realizations in terms of dynamical systems. These consist
of piecewise linear chaotic maps of the form Eq.(1), with a typical example
shown in Fig.2. Again the cells Ai provide a Markov partition for this system.
The segments of length pii and pi,i±1 in each unit cell, where the map f(x) is
linear, correspond to the non-zero transition probabilities pii and pi,i±1 of the
associated Markov chain.

The asymptotically finite mean-square displacement was proven in [26] for
independent random sequences pii and pi,i−1/pi,i+1 with ln(pi,i−1/pi,i+1) = 0.
Maps with these properties will for further reference be called maps with Sinai
disorder. The latter condition means that there is no global bias in the system
and that one observes recurrent behavior with probability one.

So far we have seen that the dynamical systems defined in Fig.1 and Fig.2
both can be mapped to random walk models with (locally) asymmetric ran-
dom transitions probabilities to next-nearest respectively nearest neighbors.
An intuitive picture for the relevant physical processes is obtained from the
continuum limit of the nearest neighbor discrete random walk model, which
is Brownian motion in a spatially random force field F̃ (x) [24]. In this limit
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Fig. 2. An example from the class of iterated maps for which the asymptotically
finite mean-square displacement follows rigorously due the work of Sinai and Golosov
[25] [26]. Also shown by dashed lines are the unit squares of the integer grid (see
Fig.1(a)) along the bisectrix. The indicated intervals pii and pi,i±1 mediate the
transitions from the i-th cell Ai to itself and its neighbors respectively. They vary
randomly from cell to cell.

the dynamics is governed by the Langevin equation

ẋ(t) = −∂Ṽ

∂x
(x(t)) + ξ(t) (4)

with Gaussian white noise ξ(t). The important point is that the graph of
the associated potential Ṽ (x) = − x F̃ (x )dx itself can be thought of as a
realization of a Brownian path. The resulting statistical self-similarity of the
potential Ṽ (Lx) L1/2Ṽ (x) implies the occurrence of deeper and deeper
potential wells as the particle proceeds. The work of Sinai and Golosov shows
that an ensemble of initially close particles moves in a coherent fashion from
one deep minimum to the next deeper potential well. In this stepwise process
it is typically one minimum which dominates and therefore determines the
(finite) width σ2(t) of the ensemble [27] [28]. Since the random environment
in the neighborhood of these minima is the same only in a statistical sense one
observes for a fixed environment still fluctuations in σ2(t). These fluctuations
become extremely rare for large times t as follows from an Arrhenius argument
[24] which says that the typical time to overcome the ever increasing relevant
potential barriers increases exponentially with the barrier height, i.e. it takes
a time of the order exp(b

√
x) for the state to travel a distance x. Solving this

relation for x says that the typical distance reached in time t increases only as
ln2 t. Indeed it has been shown rigorously that the mean displacement grows
anomalously as

x(t) = ξ(t) ln2 t (5)

with ξ(t) a random function of O(1) [25][26][24]. By averaging over the envi-
ronment this law is often expressed as

x(t) 2 ∼ ln4 t (6)
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often called ”Sinai diffusion”. A more rigorous review of Sinai’s and related
findings for random walks in random environments can be found in the mono-
graph of Hughes [29].

Applying this picture of a thermally activated process in a random Brownian
landscape to dynamical systems presupposes the existence of a Markov parti-
tion. The results of Fig.1 for continuous distributions of shifts (i), however,
show that the observed localization phenomenon is not bound to the existence
of a Markov partition. One may also expect that the feature of piecewise lin-
earity is not necessary for the occurrence of this effect. Indeed we have shown
in [30] that even anomalously enhanced diffusion generated by certain nonlin-
ear maps where F (x) varies sinusoidally in each cell [15], is totally suppressed
by the introduction of disorder of the above type.

2.2 Disordered area-preserving maps

One may wonder whether this sort of dynamical localization can be observed
also in Hamiltonian systems or area preserving maps. This question was an-
swered affirmatively by the explicit construction of an area preserving map of
the baker type, which shows the same behavior [31]. The resulting inhomoge-
neous chain of baker maps is a generalization of a class of dynamical systems
(homogeneous chains of baker maps), which recently became very popular (see
[4], and refs. therein) and which were originally introduced by Hopf in [32].
The construction is shown in Fig.3 below.

Fig. 3. The construction of an area-preserving inhomogeneous chain of baker
maps, which in the projection on the x-axis reveals exactly the dynamics of the
one-dimensional iterated map of Fig.2.
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It consists of an array of L rectangles called cells Ai, i = 0, . . . , L − 1, of
unit width in the x−direction and heights πi. During one iteration step the
inscribed rectangles within one cell Ai are mapped to the neighboring cells
and into the present cell as follows: Take e.g. the black rectangle of height πi
and width pi,i−1, which is labeled by its area πipi,i−1 in Fig.3. This rectangle
is in one iteration (from top to bottom in Fig.3) squeezed in the y−direction,
stretched in the x−direction, and transferred to the left neighboring cell Ai−1in
an area preserving manner. In the same way the grey-shaded rectangle πipi,i+1
is transferred to the right, and the light-grey rectangle gets squeezed and
stretched, but remains in the cell Ai as shown in the figure. For a finite chain
we may impose periodic boundary conditions Ai+L = Ai (L = 3 in Fig.3),
or, alternatively one could confine transport within the array by appropriate
modifications of the boundary maps (p0,−1 = pL−1,L = 0). Analogously one
can define an infinitely long chain of baker maps, and one observes that the
x−coordinate xt of a point (xt, yt) in this two-dimensional area preserving
map is iterated exactly as a point xt of the one-dimensional map of Fig.2
(with slopes p−1i,j ). This implies that the dynamical localization phenomenon
of the previous section is found also in these area preserving maps.

Note, however, that in order to get an area preserving map, the heights πi have
to be adjusted appropriately. The condition that in one iteration the outflow
of area of a given cell, say Ai, has to be equal to its inflow, results in

πi−1pi−1,i + πi+1pi+1,i = πipi,i−1 + πipi,i+1. (7)

Adding to both sides of this equation the term πipi,i and using the normal-
ization j pi,j = 1, one finds that the πi fulfill the equation for the stationary
probability distribution of a Markov chain with transition probabilities pi,j .
The latter exists for random pi,j only if the system is finite. For reflecting
boundary conditions this stationary distribution can be found exactly as

πi = π0
i−1

k=0

pk,k+1
pk+1,k

. (8)

For periodic boundary conditions a similar result is obtained [33] [34]. A char-
acterization of such stationary distributions in terms of its cumulants was
given recently in [35]. There is no need to restrict one-self to finite chains.
Imposing for the infinite system the condition that the flow of area in one
iteration from cell Ai to cell Ai+1 is equal to the backflow from Ai+1 to Ai
implying a vanishing net current through the system, one obtains as condition
for the heights πi

πipi,i+1 = πi+1pi+1,i (9)

8



which has to hold for all i. The solution of this infinite system of equations
is for i > 0 given again by Eq.(8) and an analogous expression holds for
i < 0.The cell label A0 can be attached to some arbitrarily chosen cell, and
the height π0 is an arbitrary constant. Only for finite systems one can assign
to the heights πi the meaning of a stationary distribution, and Eq.(9) then
becomes the condition for detailed balance, which is automatically fulfilled in
the case with reflecting boundary conditions. For quenched random transition
probabilities, as in the models treated here, Eq.(9) means that the πi follow
a random multiplicative process as given by Eq.(8), which occur naturally in
many branches of physics. Of course it would be of interest whether for some
class of area preserving maps or corresponding continuous time Hamiltonian
systems, such a distribution of chaotic areas occurs naturally. In such cases
one expects that one finds the same anomalous transport properties as in the
simple maps introduced here. This will be observable until the boundaries of
the system of size L are reached, which for extended systems occurs only at
exponentially large times, i.e. at times of the order O(exp b

√
L).

3 Phase Transitions and Ageing in Disordered Dynamical Systems

In this section we will point out that in the presence of a global bias the
systems treated above show various phase transitions characterized by anom-
alous chaotic transport properties. Finally we argue that these systems can
also show the phenomenon of ageing.

3.1 Phase transitions in biased systems

Releasing the conditions (i) = 0 for the system of Fig.1 or ln(pi,i−1/pi,i+1) = 0
for that of Fig.2 leads us from systems without global bias to such with a
bias. The latter may simulate an external static field or may be attributed to
systematic asymmetries of the underlying potential in more realistic models,
such as driven damped particles in some potential landscape. Such aspects are
clearly of great importance in the context of transport in ratchets [36][37]. Al-
though the connection between the simplified one-dimensional maps and more
realistic models is complicated and not fully understood, the investigation of
the former with bias will provide some insight into the possible scenarios in
the latter.

Exploiting again the connection between maps and discrete time Markov
chains, allows us to apply known results from the literature to disordered it-
erated maps. Analytical results by Derrida and Pomeau [33][34] for the biased
case ln(pi,i−1/pi,i+1) = 0 lead to transport properties for the corresponding
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dynamical systems, which we summarize in Fig.4 for a special example of the
type of Fig.2.

Fig. 4. The dependence of the normalized transport coefficients D/D0 (bold) and
V/V0 (dashed) is shown as function of the defect concentration c. In the regimes
where these are finite they are self-averaging quantities and therefore these values
are observed with probability one independent of the disorder realization.

The example consists of setting pii = 0 and choosing a binary distribution for
the transition probabilities pi,i±1 of Fig.2. More explicitly, we construct a chain
of maps consisting of two sorts of cells (see Fig.2), which we denote as A+ and
A−. For the type A+ we choose pi,i+1 = a and correspondingly pi,i−1 = 1− a,
while for type A− we reverse the assignments, i.e. we set pi,i+1 = 1 − a and
pi,i−1 = a. These cells are concatenated randomly and independently so that
type A+ is present in a concentration c and correspondingly a fraction 1 − c
of cells are of type A−. For Fig.4 we have chosen a = 1/3 so that for c = 0
we have an ordered system consisting only of cells A−, which map points
with larger probability, namely with probability 2/3, to the right, and with
probability 1/3 to the left. In this limit one gets chaotic diffusion with a mean
drift to the right, where diffusion constant D and drift velocity V are given
by D = D0 = 2a(1 − a) and V = V0 = 1 − 2a, respectively. The behavior of
the transport coefficients, normalized by its bare values D0 and V0, is shown
in Fig.4 as function of the concentration c. We need to discuss only the case
0 ≤ c ≤ 1/2, since the rest follows by symmetry. For the other extreme of full
disorder c = 1/2 we get the unbiased situation ln(pi,i−1/pi,i+1) = 0, where the
anomalous Sinai and Golosov results of section 2.1 hold. This means we get
in this case D = 0 and V = 0. Between these extremes various transitions
between dynamically different phases occur. In Fig.4 these different regimes
are numbered as I-IV. In phase I both D and V are finite and non-zero, i.e.
one has normal chaotic transport as in the ordered limit. The transition to
phase II occurs at concentrations where conditions (pi,i−1/pi,i+1)±2 = 1 are
fulfilled (two symmetric solutions in c) . This transition is accompanied by D
becoming infinite, which holds in regimes II an III. In these phases one has
therefore anomalously enhanced diffusion, i.e. the mean-square displacement
grows superlinear. The transition between II an III is signaled by a vanishing
drift velocity, i.e. the mean displacement grows slower than linearly in time.
The transition points are given by (pi,i−1/pi,i+1)±1 = 1. The anomalously slow
growth of the displacement holds up to the value c = 1/2, i.e. also in regime
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IV. The transition from III to the latter is characterized by a crossover from
superdiffusive to subdiffusive chaotic transport implying that in addition to V
also D vanishes. The last transition is observed for (pi,i−1/pi,i+1)±1/2 = 1. The
fact that the qualitative changes in the drift and diffusion properties occur at
different values of the concentration is quite common in disordered systems
and is expected to hold also more generally. A more extensive description and
a discussion of the different regimes in terms of activated Brownian motion in
tilted Brownian potentials can be found in the review article [24]. Interestingly
the same conclusions were reached very recently in the context of disordered
ratchets by a totally different reasoning within a continuous time model [37].
Finally note that dynamical phase transitions as a consequence of an applied
bias may also arise in ordered dynamical systems [38].

3.2 Ageing

The phenomenon of ageing is a well-known experimental fact from glasses, spin
glasses, and other complex materials[39][40]. Theoretical investigations are also
mainly concerned with these systems (see e.g. [41]-[43], and refs. therein), but
recently ageing was found also in much simpler model systems [44][45]. Ageing
can be defined as an anomalous behavior of response and correlation functions.
Consider e.g. the correlation function CAB(t, tw) ≡ A(tw)B(t+ tw) of two
variables A and B, where tw is the waiting time after the preparation of the
initial state at time t = 0. For t tw the correlation function CAB(t, tw) is
independent of tw and a fluctuation-dissipation theorem is supposed to hold.
Ageing is present if CAB(t, tw) depends strongly on tw when t is of the same
order as tw. Furthermore for t and tw large one often assumes a scaling behavior
of the form

CAB(t, tw) = t
−νF (

t

tw
). (10)

First numerical investigations by Marinari and Parisi [44] for random walks
in random environments of Sinai type indicated a dependence CAB(t, tw) =
ln2( t

tw
), i.e. ν = 0 in Eq.(10) for various correlation functions. Recently, how-

ever, improved numerical simulations revealed a more complex behavior i.e.
one finds asymptotically different logarithmic scalings depending on the ra-
tio ln t/ ln tw as t and tw are sent to infinity [46]. The latter kind of scaling
behavior was subsequently confirmed also analytically by an exact real space
renormalization group (RSRG) calculation [47] [48]. In any case non-trivial
ageing is found in random walks in random environments of Sinai type. As
pointed out above such systems can be implemented by dynamical systems as
introduced in Fig.2. This implies that ageing occurs also in these simple dis-
ordered dynamical systems and its generalizations treated in section 2.1. This

11



fact has been realized only recently [31]. We should remark that a behavior
as in Eq.(10) is observed also in much simpler non-equilibrium systems, even
without disorder: It was pointed out in [49] that already the simple homoge-
neous, one-dimensional random walk ẋ(t) = ξ(t), i.e. the system governed by
the Langevin equation, Eq. (4), without drift term, gives rise to a violation
of the fluctuation-dissipation theorem and a scaling behavior for Cxx(t, tw) as
in Eq.(10). The scaling, however, is trivial in this case, since Cxx(t, tw) = tw
implying ν = −1 and F (x) = 1/x in Eq.(10). It follows that the same sim-
ple scaling behavior applies also to dynamical systems, which lead to simple
diffusion, e.g. the iterated maps in [10]-[13]. Note, however, that already in
these simple iterated maps the scaling function depends in a non-trivial (frac-
tal) manner on the parameters of the map. This a consequence of the fractal
dependence of the diffusion coefficient on the system parameters [21]. A less
trivial ageing behavior was found very recently [50] for periodic iterated maps
leading to anomalous diffusion, especially in the systems introduced in [14].
Similar to the disordered case one finds in such systems a broad distribution of
trapping times which can be related to the ageing property. In periodic iterated
maps, however, the trapping is associated with marginally stable fixed points
of the dynamics. Generalizations of this class of maps can exhibit in addition
an extremely slow, i.e. a logarithmic increase in time of the mean square dis-
placement [51], which is reminiscent of ”Sinai diffusion”, Eq.(6). Also for these
maps one expects non-trivial ageing. We close this section with two remarks.
First note that very recently many more exact results have been obtained for
the Sinai model and its ageing properties, especially in the presence of a bias
[52]-[56]. These results are valid also for the associated dynamical systems of
Sinai type, but its applicability to more general dynamical systems is an open
question. Secondly, questions arising in the context of aging of the validity of
linear response and the fluctuation-dissipation theorem are well understood
for stochastic systems as described by Langevin or Fokker-Planck equations
(for disordered systems of Sinai type see [48]). Its applicability to general non-
linear dynamical systems, however, is still an active field of research despite
the fact that first works in that direction appeared two decades ago [57] [58].
For the current status of this question see e.g. [59] [60] and refs. therein. In
summary, the recent finding that simple ordered or disordered extended dy-
namical systems lead to ageing, raises important questions for future research,
e.g. whether and how the different kinds of scaling behavior are related to dif-
ferent classes of dynamical systems.

4 Spectral Characteristics and Escape Rates

In this section we will provide a complementary view on the above results, as
they are reflected in the spectral characteristics of the corresponding Frobenius-
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Perron operator and associated transition matrices, respectively. For maps of
the form xt+1 = f(xt) the Frobenius-Perron operator P describes the evolution
of densities in phase space as ρ(x, t+ 1) = P[ρ(x, t)] = dy ρ(y, t) δ(f(y)− x)
[1] [4]. In the following we study the spectral properties of P , i.e. its eigenvalues
λ(α) and eigenvectors v(α)(x) given by

P [v(α)(x)] = dy v(α)(y) δ(f(y)− x) = λ(α)v(α)(x). (11)

The spectral properties of P depend strongly on the function space considered.
In the following we restrict ourselves to piecewise linear maps, for which the
intervals [i, i + 1] provide a Markov partition (as in Figs. 1 and 2), and we
consider the evolution of densities ρ(x, t), which are constant in these intervals,
i.e. ρ(x, t) = πi(t) for x ∈ Ai = [i, i + 1]. For these maps this is not a strong
restriction since sufficiently smooth initial densities ρ(x, 0) approach such a
form exponentially fast. The evolution equation for the πi(t) is then given
by Eq.(3). Correspondingly we investigate the spectral properties of P in the
space of piecewise constant functions, where Eq.(11) can be replaced by

i

v
(α)
i pij = λ(α)v

(α)
j . (12)

The elements pij of the Markov transition matrix P are given by

pij = (P)ij = 1/ fi,j (13)

with fi,j denoting the derivative of that branch of f(y) in the interval Ai =
[i, i + 1], which maps points onto the interval Aj. For systems with a finite
number L of cells Ai this implies that the invariant density ρ∗(x) = ρ(x, t→
∞), i.e. the eigenfunction ofP with eigenvalue λ = 1, takes the form ρ∗(x) = πi
for x ∈ [i, i + 1]. The vector π with components (π)i = πi is thus the left-
eigenvector v(1) of the (L × L) transition matrix P with eigenvalue λ(1) =
1. The corresponding right-eigenvector is given by u(1) = η = (1, 1, . . . , 1),
expressing that P is a stochastic matrix, Pη = η. More generally we consider
the spectral decomposition of P given by

pij =
L

α=1

u
(α)
i λ(α)v

(α)
j (14)

with {v(α)} and {u(α)} denoting the complete bi-orthonormal set of left-
and right-eigenvectors of the transition matrix P, i.e. v(α)P =λ(α)v(α) and
Pu(α) =λ(α)u(α) with v(α) · u(β) = δαβ. Since P is a stochastic matrix all
eigenvalues λ(α) lie within the unit circle λ(α) ≤ 1 according to the Perron-
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Frobenius Theorem [61]. With the aid of Eq.(14) and the bi-orthonormality
condition the evolution of πj(t) can be written as

πj(t) =
L

i=1

L

α=1

πi(0) u
(α)
i exp(− (α)t) v

(α)
j , (15)

where we have introduced the (in general complex) relaxation rates (α) by
setting λ(α) = exp(− (α)), with Re( (α)) ≥ 0 and −π < Im( (α)) ≤ π. Note
that for λ(α) → 1, i.e. (α) → 0 we can write (α) ≈ 1− λ(α).

4.1 Maps with Sinai disorder

Let us first consider the spectrum λ(α) for dynamical systems with Sinai

disorder as in Fig.2. It turns out that the eigenvalues λ(α) are real in this case.
The spectrum λ(α) , which is shown in Fig. 5 was obtained for a dynamical
system of L = 1000 cells of the type of Fig.2, with the {pi,i−1} chosen randomly
and with equal probability from {1/9, 8/9}, pi,i = 0, and pi,i+1 = 1 − pi,i−1
(Sinai disorder) and reflecting boundary conditions.

Fig. 5. The spectrum of a dynamical system of Sinai type. The eigenvalues appar-
ently cluster near λ = 1 (and by symmetry also at λ = −1). They were obtained by
numerically diagonalizing the transition matrix P.

The importance and the meaning of the observed clustering in Fig.5 becomes
apparent by considering the evolution of initial distributions ρ(x, 0), which
are constant in some cell [k, k + 1], i.e. πi(0) = δi,k and to observe the time
course of the probability in the initial cell πk(t). The latter is given by πk(t) =
L
α=1 u

(α)
k exp(− (α)t) v

(α)
k . Averaging this expression, i.e. the return probabil-

ity, over all such initial conditions, one obtains πk(t) ≡ 1
L

L
k=1 πk(t) =

1
L

L
k=1(P

t)kk =
1
L

L
α=1 exp(− (α)t), where in the last step we have used

v(α) · u(α) = 1. Introducing the density of relaxation rates

ρ( ) ≡ 1

L

L

α=1

δ( − (α)) (16)
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one can express πk(t) as the Laplace transform of ρ( ), i.e.

πk(t) =

∞

0

d ρ( ) exp(− t). (17)

This quite general and well-known relationship shows that the decay process at
the starting cell in the long time limit is determined by the small− behavior
of ρ( ), or, equivalently by the eigenvalues λ(α) of P near λ = 1.

To obtain a better understanding of the spectrum {λ(α)} of P, we will show
how this eigenvalue problem can be mapped to an equivalent quantum me-
chanical problem. Note first that P is a tridiagonal matrix. Such a matrix
can always be transformed to a symmetric tridiagonal matrix H by a sim-
ilarity transformation S, i.e. one can write P = S−1HS. One easily verifies
that the matrix elements of H are given by Hi,i+1 = Hi+1,i = (pi,i+1 pi+1,i)1/2,
Hi,i = pi,i, and the matrix elements Sij = siδij of S fulfill the recursion relation
si+1 = si ( pi,i+1/pi+1,i)

1/2. A comparison with Eq.(9) and Eq.(8) shows that
for finite L the matrix elements Sii can be identified with si = ( πi)1/2. Clearly
the spectrum {λ(α)} of H is identical with that of P. Since H is symmetric,
the λ(α) are real as stated above. The eigenfunctions Ψ(α) of H can also be
chosen real and are related to those of P by

u
(α)
i = Ψ

(α)
i /si, v

(α)
i = Ψ

(α)
i si. (18)

The eigenvalue problem HΨ(α) = λ(α)Ψ(α) can be regarded as a Schrödinger
equation for the 1-d Anderson problem with tight-binding HamiltonianH (see
e.g. [62]). Note that the transformation of a 1-dimensional random walk prob-
lem to a quantummechanical system is a standard procedure in the continuum
limit [63], where the state dynamics is described by a Langevin equation as in
Eq.(4) and the evolution of densities by the corresponding Fokker-Planck equa-
tion. In our case the problem is mapped to a 1-d Anderson Hamiltonian with
on-site disorder, given by the elements Hi,i = pi,i, and with off-site disorder by
the hopping elements Hi,i+1 = Hi+1,i = (pi,i+1 pi+1,i)

1/2. Note that although
the {pi,i+1} are independent random variables, the {Hi,i+1} are not indepen-
dent due to the applied transformation, i.e. Hi,i+1Hi+1,i+2 = Hi,i+1Hi+1,i+2.
Thus the off-site disorder is correlated. Since one knows that for such 1-d
Anderson problems almost all eigenfunctions are exponentially localized, one
would naively expect that in the corresponding random walk problem there
will be no transport at all. This, however, is not true since the ground state
Ψ(1) is extended. We call Ψ(1) a ground state because the relaxation rates
(α) = 1 − λ(α) ≥ 0 are the eigenvalues of the Hamiltonian 1−H and Ψ(1)

corresponds to the lowest lying eigenvalue (1) = 0 of that Hamiltonian. To see
that Ψ(1) is extended in the limit L → ∞, note that from Eq.(18) it follows
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that Ψ(1)
i = ( πi)

1/2. As mentioned above, the {πi} are given by a random mul-
tiplicative process with diverging fluctuations for L→∞, so that Ψ(1) is not
normalizable in that limit. This implies that the anomalous transport prop-
erties of the dynamical system with Sinai disorder are related to the spectral
properties of 1−H near = 0 (or, equivalently to that of P near λ = 1). In or-
der to investigate quantitatively the clustering of eigenvalues near the ground
state one best considers the integrated density of states (i.e. relaxation rates)
defined by

N( ) =
0

d ρ( ) (19)

where ρ( ) is given by Eq.(16) with (α) = 1 − λ(α). Fig.6a) shows N( ) on a
linear scale for the spectrum of Fig.5. N( ) increases monotonically from 0 to
1, and appears to be singular near = 0. This singular behavior is confirmed
in Fig.6b), where we plot N vs. |ln | on a doubly logarithmic scale.

Fig. 6. a) The density of states N( ) corresponding to the spectrum of Fig.5. b) The
singular behaviour is confirmed in a log-log plot of N( ) vs. |ln |. The dashed line
corresponds to a dependence N( ) = 2/ ln2

The asymptotic behavior of N( ) for → 0 which is given by the dashed line
corresponds to

N( ) = c/ |ln |δ (20)

with c = 2 and δ = 2. Thus ρ( ) diverges at the band edge as 4/( |ln |3). This
analytic form of N( ) was obtained by Bouchaud et al. [64] for an exactly
solvable continuum model for a random walk in a random environment, which
has the same asymptotics as the continuum model of the Langevin equation
Eq.(4). For the latter the logarithmic divergence of N( ) was already ob-
served numerically in [65]. A similar divergence is known for the Dyson model
of localization [62]. Our results of Fig.6 imply that the discrete state, discrete
time random walk model has the same asymptotics as the continuum model.
For our dynamical system with Sinai disorder, Fig.2, this means that the long
time behavior of πk(t) is given by Eq.(17) resulting in πk(t) ∼ 2/ ln2 t for
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long times. This fits very well into the picture that the decay at some initial
cell k is caused by the anomalous drift x(t) = O(ln2 t), Eq.(5). More accu-
rately this statement is captured in the generally accepted scaling assumption
(P t)kl =

1
y(t)
g( x
y(t)
) with x = |k − l| (see e.g. [66]). Setting x = 0 and assuming

that self-averaging holds, i.e. by replacing the average over all cells πk(t) by
the disorder average πk(t), it follows that y(t) = ln2 t. From the resulting scal-
ing law one easily deduces x(t) 2 ∼ ln4 t, the law for Sinai diffusion, Eq.(6).
These results for N( ) and πk(t) should be contrasted with the behavior
for maps or random walks generating normal diffusion, for which one obtains
πk(t) ∼ t−1/2 and N( ) ∼ 1/2.

The diffusive behavior of dynamical systems was recently related to escape
rates from regions in state space (see ”escape rate formalism” in [4] [3] and
refs. therein). To be more specific, one finds that the escape from a region
of size L is described by an escape rate γ(L), which decreases for large L
as γ(L) ∼ D(χ/L)2 with D being the diffusion constant and χ a geometric
factor. Conversely D = limL→∞ γ(L)L2/χ2. Since we have shown in Section 2
that D vanishes for the considered disordered maps, γ(L) must vanish faster
than L−2 with increasing system size, and one wonders how. To investigate
this question we may again exploit the connection between our dynamical
systems and Markov models. Further we are going to use that escape rates are
determined by the maximal eigenvalue of suitably chosen matrices [4].

We consider first a semi-infinite random chain of maps of Sinai type as in Fig.2,
or equivalently, the semi-infinite tridiagonal Markov transition matrixP with a
reflecting boundary condition at cell i = 1 and otherwise with matrix elements
as above in Eq.(13). Define the (L×L)-submatrix Q of the matrix P, which is
obtained by considering only transitions connecting the states i = 1, 2, . . . , L.
The matrix Q is no longer stochastic but sub-stochastic, i.e. the still positive
entries of at least one row no longer add up to one, but j Qij < 1 for some
i. Therefore its largest eigenvalue λ(1) is strictly smaller than 1. If one chooses
an initial distribution in the segment S containing cells {1, 2, . . . , L} and asks
for the fraction still to be found in S after t iterations (without considering

returns to S from outside), one finds that it decays asymptotically as λ(1)
t ≡

exp(−γt). This is easily established by defining the states i = L + 1, L + 2,
etc. as absorbing states and by considering the spectral decomposition of Q
analogous to Eq.(14). We can thus pick one realization of the disordered chain
of maps and within this realization we increase the segment length L and
correspondingly the dimension of the submatrix Q. Diagonalizing Q for each
L and taking the maximal eigenvalue λ(1)(L) yields the length dependence of
the escape rate as γ(L) = − ln(λ(1)(L)). The result of such a procedure where
L was increased in steps of ∆L = 1 up to Lmax = 200 is depicted in Fig.7(a).

In Fig.7(a) one finds an irregular increase of γ(L) with a trend given roughly
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Fig. 7. a) The dependence of − lnγ(L) on the length L in a doubly logartithmic
plot. The system parameters are as in Fig.5. b) The same as in a) but averaged
over 10 disorder realizations. The dashed line corresponds in both graphs to the
functional form γ(L) = a exp(−bL1/2) with constants a and b.
by the dashed line. This trend is confirmed in the averaged escape rate γ(L)
of Fig.7(b). Its decay as a stretched exponential

γ(L) = a exp(−bLβ) (21)

with exponent β = 1/2 is consistent with the picture of a random landscape
where the barriers increase with the system length as L1/2 as discussed in
connection with Eq.(4). It is also consistent with the result of Noskovicz and
Goldhirsch [67], who found for the Sinai model that the typical mean first
passage time τ , and thus 1/γ, depends on L as ln τ ∼ L1/2.

4.2 Maps with topological disorder

In the following we will show that the picture we developed for maps with Sinai
disorder has to be modified for Markov maps with topological disorder (see
Fig.1(a)). The first indication of deviations from the Sinai case is seen in the
L−dependence of the escape rates. They were again obtained by calculating
the maximal eigenvalue of the corresponding (L × L)-submatrices Q. The
Fig.8(a) is analogous to Fig.7(b), but for the system of Fig.1(a).

In the log-log plot of ln γ(L) vs. L one finds again a linear behavior, but in
contrast to Fig.7(b) where we found a slope β = 1/2, we now find β 0.34.
This exponent is confirmed in Fig.1(b), where we extend the range up to
L = 1024 choosing fewer L−values equidistant on a logarithmic scale and
apply a different sampling strategy. The exponent β was obtained here from
a least-squares fit of points with L ≥ 32. Thus the escape from segments of
length L follows again a stretched exponential, i.e. γ(L) = a exp(−bL0.34),
but due to the larger exponent β it is faster than in the Sinai case. Using
the escape rate formalism [4] this result implies that the Kolmogorov-Sinai
entropy hKS(L) of the dynamics on the fractal repeller within a finite segment
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Fig. 8. a) The dependence of − ln γ(L) on the length L for the disordered map of
Fig.1 in a doubly logartithmic plot. As in Fig. 7(b) it was obtained by averaging over
10 disorder realizations (Lmax = 300). b) The same as in a) but for larger systems
(L ≤ 1024) and every data point representing an average over 50 different disorder
realizations (in total 400 different systems). The coarsely dashed line corresponds
in both graphs to the asymptotic form γ(L) = a exp(−bLβ) with β 0.34. For
comparison the Sinai behavior, i.e. β 1/2, is shown in (b).

L typically deviates from its asymptotic infinite L value hKS(L = ∞) = ln 4
exactly by γ(L).

We have seen in the system with Sinai disorder that the exponent δ = 2,
which characterizes the logarithmic decay of the return probability πk(t) ∝
1/ |ln t|δ, was the inverse of β, i.e. δ = 1/β. The heuristics behind this con-
nection is that both the escape from a segment and the decay of probability
in the initial cell are mediated by the same mechanism for the anomalous
drift in the system. From such a reasoning one expects that in the system
with topological disorder the spectrum of the propagator and correspondingly
the density of relaxation rates is also different from the Sinai case. First we
note that now the spectrum is no longer real, since the transition matrix is
no longer tridiagonal due to the coupling to next-nearest neighbor cells. The
spectrum obtained from diagonalizing P as in Eq.(14) is shown in Fig.9(a).

Fig. 9. a) The spectrum in the complex plane of the transition matrix corresponding
to the topologically disordered map of Fig.1 (L = 2000 cells). The eigenvalues with
Reλ > 0 have zero imaginary part, i.e. are purely real. b) The eigenvalues ordered
according to their real part. The clustering of the real eigenvalues near λ = 1 give
rise to a singularity in the density of relaxation rates (see Fig.10).

The part of the spectrum near λ = 1 (see Fig.9(b)), which is purely real
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and which determines the long time behavior, again appears to produce a
singularity in the density of relaxation rates. This is confirmed in the plot of
the integrated density N vs. |ln | on a doubly logarithmic scale as shown in
Fig.10.

Fig. 10. Doubly logarithmic plot of the integrated density of relaxation rates N vs.
|ln | (averaged over 50 disorder realizations of length L = 2000) for topological
disorder near = 0. The dashed line corresponds to a behavior N( ) ∼ 1/ |ln |2.6.
We find again a behavior near the band edge of the form Eq.(20) but now with
an exponent δ 2.6. The relation β = 1/δ, which is valid for the Sinai case, is
only roughly fulfilled (β = 0.34 vs. 1/δ 0.38), but this may be due numerical
inaccuracies in determining the exponents. In any case this means that the
anomalous drift in the topologically disordered system is determined by other
mechanisms than in the Sinai case. The reason seems to lie in the following
observation. For Sinai disorder and also its continuum limit the stationary
distribution for finite systems do not carry probability currents due to detailed
balance. This had let to density fluctuations of the order O(exp a

√
L). In

contrast, the topologically disordered systems with its transitions to next-
nearest cells do support currents also in the stationary state. This is also the
reason, why there exists no simple expression for the stationary distribution
in this case. On the other hand, numerical investigations (not shown here)
of the ”ground state” indicate that also in this case the stationary density
behaves as in the Sinai case under changes of the system length L, i.e. ln ρ
L1/2. The existence of currents in the stationary state, however, prohibits an
interpretation of the state dynamics as activated process in a potential as
it was possible in the Sinai case. This fact appears to be responsible also
for the modified anomalous drift properties for systems with transitions to
next-nearest cells. The latter system obviously is not in the same class as the
system with Sinai disorder, although it shows the same boundedness of the
mean-square displacement σ2(t) = x2t − xt

2, at least numerically (Fig.1(b)).

5 Further Generalizations and Perspectives

The system with topological disorder can be regarded as special case of maps
with disorder which transfer points x(t) into next-nearest cells. For these more
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general maps there may exist in the piecewise linear case again a Markov par-
tition made up by the integer intervals. Such Markov maps are similar to that
of Fig.2, but now with five instead of three branches in each unit cell. The
corresponding Markov models are random walks with next-nearest neighbor
transitions. Analogously maps with even farther reaching transitions may be
defined, which correspond to random walks with next-next-nearest neighbor
transitions, etc. A new aspect shows up, however, already for Markov maps
with transitions to next-nearest cells. At each site i one has the freedom to fix
independently four transition probabilities pi ≡ {pi,i−2, pi,i−1, pi,i+1, pi,i+2} (or
slopes), pii follows by normalization. The first fundamental problem is to de-
cide whether the resulting random system has a bias or not. In mathematical
terms this amounts to the question of recurrence of the random walk, i.e. what
is the generalization of the Sinai condition ln(pi,i−1/pi,i+1) = 0. There exists an
answer in terms of the Lyapunov spectrum of a certain infinite product of ran-
dom matrices A(i) associated with such a random environment, which was
provided by Key [68] (see Appendix). Already for Markov maps with tran-
sitions to next-nearest cells, however, one needs to calculate the Lyapunov
spectrum of an infinite product of random (4 × 4)-matrices, which cannot
in general be done analytically. Thus one does in general not know exactly
whether one is in a bias-free system. There are, however, special cases for which
a vanishing bias is guaranteed. Such a situation is given e.g. by the following
generalization of binary disorder: Take two sets of transition probabilities p ≡
{pi−2, pi−1, pi+1, pi+2} and p ≡ pi−2, pi−1, pi+1, pi+2 = {pi+2, pi+1, pi−1, pi−2},
i.e. p maps points in the same manner say to the left (right) as does p to
the right (left). If one defines a random environment by randomly sampling
pi with equal probability from {p,p} the resulting system obviously has no
bias by symmetry. Such a system is a generalization of the Sinai system with
binary disorder, where pi ≡ {pi,i−1, pi,i+1} is with equal probability taken
e.g. as p = {1/9, 8/9} and p= {8/9, 1/9} as we did for calculating the spec-
trum of Fig.5. We calculated escape rates, spectra, and integrated densities
of relaxation rates also for such disordered systems with binary disorder and
transitions to next-nearest neighbors. E.g. for p ≡ {1/6, 1/6, 1/6, 1/3} and
correspondingly p ≡ {1/3, 1/6, 1/6, 1/6} we found again the stretched expo-
nential in the escape rates and the logarithmic decay of the return probability,
this time with exponents β 0.24 (average over 500 disorder realizations) and
δ 3.0, respectively. Thus we find again new exponents, where in addition
the relation β = 1/δ seems to be violated even more drastically. A systematic
investigation of the dependence of these exponents on the transition range
and other parameters is currently in progress. We finally should mention that
the more general binary disorder introduced above can be generalized easily
to smoothly varying nonlinear maps. An example is the sinusoidal variation
within the cells as investigated in [30], where the localization property was
also observed. The anomalous drift behavior appears to be more subtle and
deserves further investigations.
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6 Appendix

Here we briefly restate in terms of Markov maps a criterion by Key [68],
which guarantees recurrence of the associated random walk, i.e. a bias-free
situation. Consider a random walk with transitions up l neighbors to the
left and r neighbors to the right. Define at each site the (r + l)-dimensional
vector of transition probabilities pi ≡ {pi,i−l, . . . , pi,i−1, pi,i+1, . . . , pi,i+r}. For
the theorem to hold the {pi} defining the random environment must be i.i.d.
Furthermore one requires ln pi,i−l > −∞, ln pi,i+r > −∞, and pi,i−l = 0 and
pi,i+r = 0 at all sites i. So our topologically disordered map of Fig.1 does not
belong to the models where the theorem holds. One associates to each site i a
(l + r)× (l + r) matrix A(i) with elements

A(i)mn = δm,n−1 + δm,l+r
δn,r+1 − pi,i+r+1−n

pi,i−l
(22)

which is built from elements of the vector pi. As an example, for next-nearest
neighbor models as discussed in Section 5 with l = r = 2 the (4× 4) matrices
A(i) are given by

A(i) =



0 1 0 0

0 0 1 0

0 0 0 1

−pi,i+2
pi,i−2

−pi,i+1
pi,i−2

1−pi,i
pi,i−2

−pi,i−1
pi,i−2


(23)

Since the {pi} must be i.i.d., this holds also for the matrices A(i) . The
criterion of Key states that the random walk in the random environment
given by the {pi} is recurrent, if for the infinite product of random matrices
A(−L) · . . . · A(−3) · A(−2) · A(−1) · A(0), L → ∞, the Lyapunov exponents of
this product fulfill the condition λr = λr+1 = 0, where the ordering of the
Lyapunov exponents is λ1 ≤ λ2 ≤ . . . ≤ λl+r. Since it can be shown that
one of the exponents λr or λr+1 is zero anyway, this is a condition for one
more Lyapunov exponent in the spectrum. Key constructs special classes of
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systems with l+ r = 3 and l+ r = 4 where λr = λr+1 = 0, which can easily be
translated to dynamical systems of piecewise linear maps by the prescription
Eq.(13). For systems with binary disorder, as introduced in Section 5, one
associates to the vectors p and p matrices A and A, respectively. One can
show that A can be expressed by A as A = I ·A−1 · I, where I inverts indices,
i.e. Imn = δm,l+r+1−n. These systems with binary disorder are not contained
in Key’s special classes. Conversely one can conclude that from symmetry
considerations it follows that products of random matrices containing A and
A (with l = r) with equal probability have two vanishing Lyapunov exponents
in the center of their Lyapunov spectrum. Generalizations of this statement to
products with several matricesA,A ,A , . . . and the correspondingA,A ,A ,
etc. are obvious.
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