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The movability of localized high-amplitude excitations of the discrete nonlinear Schrödinger equa-
tion is studied theoretically. The excitations are considered in connection with the surrounding
low-amplitude waves. Migrating localized excitations undergo a temporary change of their content
of the quantities that are conserved by the system’s dynamics. Such fluctuations are caused by the
interaction of excitations with surrounding low-amplitude waves. This requires the rare event of an
intermediate decrease of the system’s entropy, which is the statistical reason for the pinning of these
structures at the lattice.

PACS numbers: 63.20.Pw,64.60.Cn,45.05.+x,42.65.Jx

INTRODUCTION

This paper explores the movability of localized exci-
tations in the discrete nonlinear Schrödinger equation.
High-amplitude localized excitations that emerge spon-
taneously from a background of low-amplitude waves are
a dynamical property of many spatiotemporal systems.
Examples for this are collapses in plasmas and Bose-
Einstein condensates or the self-focusing of light in Kerr-
nonlinear media. In arrays of coupled optical fibers [5],
the self-focusing dynamics increases the light intensity
within a few fibers, and decreases the intensity in all other
fibers. The envelope of the field in a nonlinear fiber ar-
ray (indexed by n) with a zero group velocity dispersion
is governed [4] by the the discrete nonlinear Schrödinger
equation (DNLS)

i
∂φn
∂t

= φn+1 + φn−1 + |φn|2φn (1)

where the ’time’ t means the normalized propagation dis-
tance. The modulus-square norm (or ’particle number’)
A =

∑
φiφ
∗
i is a conserved quantity of this equation.

Equation (1) derives as iφ̇n = ∂H
∂φ∗n

from the Hamiltonian

(or ’energy’) H =
∑

i(φiφ
∗
i+1 + φ∗iφi+1) + 1

2φ
2
iφ
∗
i
2 which

is another conserved quantity. An interesting phenom-
enon in this spatially discrete system is the trapping of
intensity-peaks in the fibers: Highly localized solutions
interact most strongly with the discrete structure of the
supporting optical medium, so that they are pinned at
the lattice for most of the time and rarely migrate to a
neighboring lattice site. This is shown in a simulation
(Fig.1a,b) where the DNLS with N = 1024 lattice sites
and periodic boundary conditions has been integrated
with spatially homogeneous low-amplitude initial condi-
tions φn(t = 0) = 0.2. This homogeneous state is phase-
unstable, and within a few hundred time units several
localized high amplitude structures emerge from a dis-
ordered low-amplitude background at most lattice sites.
Fig.1a shows the rare event of a migration of a localized
localized from one lattice site to a neighboring lattice site.
It shows the profile of the squared amplitude |φn(t)|2 as

a function of time (from 1058 time units till 1073 time
units after the beginning of the integration) in a small
segment (11 lattice sites) of the chain. It shows that at
first a high amount of particles (up to |φ125|2 ≈ 4.5) is
gathered at the site 125, but at t ≈ 1066 these particles
move to the neighboring lattice site 126 within 3 time
units. The particle density decays rapidly with the dis-
tance from the peak to the level |φ|2 ∼ O(0.04) of the
surrounding disordered waves.
The interaction with these low-amplitude waves is cru-
cial for the migration, and high-amplitude excitations are
pinned to the lattice when all oscillators except those in
the close vicinity of the peak are set to zero. This con-
nection of the pinning of an excitation and low-amplitude
waves is studied in a second numerical experiment with
equation (1) for a chain of 512 lattice sites (Fig.1c). The
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FIG. 1: (a) Particle density |φn(t)|2 in a sector of 11 lattice
sites from a chain of 1024 lattice sites. The sector shows
a small time interval of 15 time units at which a migration
occurs out of a long integration time. (b) The same sector as
(a), where dark gray means a high particle density φn|2. (c)
The maximum height |φn| of peaks that are found to migrate
as a function of the particle density A/N of the surrounding
low-amplitude waves.
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initial condition is a single isolated excitation in an en-
vironment of low-amplitude random waves with a white
spectrum where all wavenumbers have the same power.
This system is integrated over 10,000 time units for var-
ious peak-heights and wave-amplitudes and to observe
whether the excitation migrates or not. The lattice-
pinning turns out to be stronger if the amplitude of the
excitation is higher. Fig.1c shows the time-average am-
plitude |φ|peak of the highest localized structure that has
been found to migrate at least once during the 10,000
time units of the integration as a function of the sur-
rounding low-amplitude waves. The probability of a
peak to migrate decreases rapidly with its height, and
the threshold for the pinning of peaks is about |φ| ≈ 2,
increasing slightly with the level of the surrounding dis-
ordered waves. Peaks that are higher than the one of
Fig.1a,b are usually pinned at one site.
The reason for this pinning effect and its possible ap-
plications in optical signal switching have been investi-
gated in many papers. Unlike continuous systems whose
solitary solutions can move without change in shape, so-
lutions of discrete systems have no Goldstone mode so
that their shape changes when they propagate in space.
In the generic case of a nonintegrable lattice dynam-
ics, no analytic solution schemes for moving solutions
are available, and numerically observable solutions radi-
ate low-amplitude waves as they propagate through the
lattice. The dynamics of solitary long-wave solutions is
well approximated by a continuum description, but high-
amplitude excitations with a width of the order of the lat-
tice constant are subjected to a strong periodic force that
impedes their movement. Known stable solutions of the
DNLS are statically pinned to the lattice. One approach
to capture this feature uses the concept of the Peierls-
Nabarro barrier that originally describes how the peri-
odic lattice potential of crystals prevents the migration
of defects unless some external force exceeds a threshold
value. This approach [3] asserts that the migration occurs
via an intermediate state with a different energy content.
This effective pinning energy however is not a fixed bar-
rier caused by the lattice as it generically depends on the
amplitude of the excitation itself [7]. It has been pointed
out [6] that this approach assumes the conservation of
the action during the migration. Alternative paths with
intermediately changing amplitudes could migrate with-
out any change of energy. Hence the amount of particles
and energy that are locally absorbed this structure are
crucial both for pinning and for migrations of localized
excitations.
This paper explains the pinning and the possibility of
migrations of localized excitations interacting with low-
amplitude waves as a statistical process. It makes use
of the recent progress of the understanding of localized
solutions as statistical phenomena [8],[9]. Localized exci-
tations must be seen in connection with surrounding low-
amplitude waves. Depending on the temperature of these

waves, the excitations can grow or they can be melted
away. This approach derives the amounts of energy and
particles in the localized excitations from the thermo-
dynamic potentials of surrounding low-amplitude waves.
This yields a local conservation of both quantities within
the excitation on longer time scales, while they fluctuate
on short scales.
First, this paper shows that the trajectory of migrations
can be described by an idealized dimer model that re-
duces the lattice to two sites. This migrational orbit ex-
ists only for peaks below a certain critical energy. Above
this threshold, the energy conservation prevents any mi-
gration of peaks.
Second, the total lattice is considered and the width of
the localized excitations is taken into account. Perfect
localized excitations with no suurounding low-amplitude
waves are always pinned and they cannot migrate spon-
taneously, but migrations can be triggered by an inter-
action with surrounding low-amplitude waves. A migra-
tion to a neighboring lattice site requires an intermediate
state that is statistically unfavorable. Only huge random
fluctuations of its particle- and energy-contents allow the
peak to move to a neighboring site.
Most figures (Fig.1a,b, Fig.2a,b, Fig.3b, Fig.6, Fig.8,
Fig.9) derive from one numerical simulation of a migra-
tion in equation (1). It has been confirmed in many more
simulations that this process of migration is representa-
tive.

LEVEL-SETS AND THE PATH OF THE
MIGRATION

Conservation laws during the migration

Fig.1 indicates that there is a high particle density dur-
ing the migration only at the two lattice sites n = 125,
the initial location of the peak, and at n = 126, its lo-
cation after it has moved. Fig.2a shows the evolution
of the particle numbers at these two lattice sites dur-
ing the migration. The particle number at the site 125
decreases from |φ125|2 ≈ 4.6 to a value close to zero.
Simultaneously, the particle number at the neighboring
site 126 increases from around zero to |φ126|2 ≈ 4.5. The
total number of particles at the two sites is almost con-
stant |φ125|2 + |φ126|2 ≈ 4.6 ± 0.1, and there is little
exchange of particles of these two lattice sites with their
neighbors where the amplitudes remain small during the
migration. The migration is basically a transfer of par-
ticles from the ’donor’ lattice site 125 to the neighboring
’acceptor’ site 126. Corresponding to the growth and de-
cay of the adjacent peaks, the nonlinear energy |φ126|4/2
grows and |φ125|4/2 decays (Fig.2b). Unlike the parti-
cle number, the sum of these two nonlinear energy con-
tributions is not conserved and it decreases intermedi-
ately during the migration. The energy that is released
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from the nonlinearity is stored in the central bond so that
the coupling energy 2Re(φ125φ

∗
126) grows intermediately

(Fig.2b). The sum |φ125|4/2 + |φ126|4/2 + 2Re(φ125φ
∗
126)

of the nonlinear energies at the two sites and the coupling
energy in the central bond is roughly conserved.
This approximate local conservation of energy and parti-
cles at two sites suggests to model the migration process
by a perfectly isolated dimer of only two oscillators φl
and φl+1, with a constant particle number

Ad = |φl|2 + |φl+1|2 (2)

and a constant energy that includes the nonlinear contri-
bution from the two sites and the energy from the central
bond

Hd = 1
2 |φl|4 + 1

2 |φl+1|4 + 2Re(φnφl+1)
= 1

2 |φl|4 + 1
2 |φl+1|4 + 2|φl||φl+1| cosα

(3)

where α is the phase difference between φl and φl+1. This
model neglects smaller fluctuations of the dimer’s energy
and particle content due to interactions with the sur-
rounding low-amplitude oscillators.

Intersection of level-sets

Writing the donor as φl = |φl|ei(ψ−α/2) and the accep-
tor as φl+1 = |φl+1|ei(ψ+α/2), the four-dimensional phase
space of the dimer can be represented by the three coor-
dinates |φl|, |φl+1|, cosα, plus the trivial phase variable
ψ. The two conservation laws define level sets in the
phase space.
Any solution conserving (2) and (3) is restricted to the
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FIG. 2: Particle number |φ125|2 and |φ126|2 (a,c) and
nonlinear energies |φx|4/2, |φx|4/2 and coupling energy
2Re(φ125φ

∗
126) (b, d) during the migration. The numerical

data (a),(b) describe the the migration of Fig.1a,b as a func-
tion of time for (1064.4 ≤ t ≤ 1067.5). The analytical data
(c),(d) are functions of the parameter ν (see equation (4).

intersection manifold of the two level sets, which de-
termines the path of the migration. Parameterized by
ν ∈ [0, 1], this onedimensional manifold is given by

φl(ν) = r
√

1− νei(ψ−α/2)

φl+1(ν) = r
√
νei(ψ+α/2) (4)

with cosα = r2
√
ν − ν2/2. It connects the state (|φn(ν =

0)| = r, |φn+1(ν = 0)| = 0) before the migration, when
all particles are gathered at the site n, and the state after
the migration (|φn(ν = 1)| = 0, |φn+1(ν = 1)| = r), when
all particles are gathered at n+ 1. Fig.3a shows the level
sets of Ad = 4 and Hd = 8. Their intersection set in-
cludes the initial state |φl(ν = 0)| = 2, |φl+1(ν = 0)| = 0.
This intersection path closely matches the numerical tra-
jectory. Fig.3b shows the intersection line of the level sets
and the trajectory of the migration of the simulation of
Fig.1. The numerical data are given as points with dis-
tances of 0.1 time units. It also shows the projections
of the data to the three planes cosα = 0, |φ125| = 0,
|φ126| = 0.
Corresponding to the solution (4), the particle number
of the initial peak |φl|2 = r2(1 − ν) decays linearly as
a function of ν, while it grows as |φl+1|2 = r2ν at the
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the projections to the level sets |φ| = 0 and cosα = 0.
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|φn| = 0, |φn+1| = 2.5 on the intersection set.

neighbor site (Fig.2c). Similarly, the nonlinear energies
decay and grow as r4(1− ν)2/2 and r4ν2/2 respectively,
while the bond between the two sites stores the energy
r4(ν − ν2) intermediately (Fig.2d). These particle- and
energy densities as functions of the parameter ν closely
agree to the numerical data (Fig.2a,b).

Threshold of the migration

Fig.4a shows the intersection path that connects a
donor |φl(ν = 0)| = 1.5 with an acceptor |φl+1(ν = 1)| =
1.5. Fig.4b shows that there is no such closed connec-
tion for |φ| = 2.5. The closed connection (4) exists only
if the condition cosα ≤ 1 is fulfilled for all ν ∈ [0, 1].
With its maximum cosα(ν = 1/2) = r2/4 at the migra-
tions midpoint ν = 1/2, this inequality is only fulfilled if
r2 ≤ 4, which corresponds to an initial donor peak am-
plitude |φ(ν = 0)| ≤ 2.
Peaks with |φ| > 2 cannot migrate, since the |φ|4-energy
of the initial peak cannot be stored in the coupling term
2Re(φlφ

∗
l+1) at the midpoint of the migration. From the

particle conservation it follows that the amplitudes of
the two oscillators are |φl(ν = 1/2)| = |φl+1(ν = 1/2)| =
r/
√

2 at this point. Such a state of two isolated peaks
with a central bond (’isolated bond’ or ’ib’ in Fig.5) can

maximally absorb the energy H = r4/4+r2 for α = 0, or
a smaller amount of energy for a nonzero angle α. A sin-
gle isolated peak (’ip’ in Fig.5) has an energy H = r4/2.
Fig.5 shows that the maximum energy of the central-
bond state is larger than the energy of the isolated peak
for A < 4. In this range a central bond state with a suit-
able α can absorb the energy of the initial isolated peaks.
In contrast, the energy of the isolated peak with A > 4 is
higher than the energy of any intermediate central-bond
state, and the local conservation laws (2) and (3) are in-
compatible with a migration.
The limit for large a corresponds to the original argu-
ment [3] for the Peierls-Nabarro barrier in the DNLS:
For an initial donor amplitude |φl| = r, the amplitudes
of donor and acceptor will match as |φl| = |φl+1| = r/

√
2

at the time when half of the particles are transfered. For
r large, the quadratic coupling energy can be neglected
in comparison to the quartic nonlinear energy. The en-
ergy H4 = r4/4 of this state differs from the initial energy
H4 = r4/2, and the difference between these two energies
may be regarded as a Peierls-Nabarro barrier that pins
the peak at one site.

Dynamics of the migration

The intersection line between the two shells A = const
and H = const is an exact solution of a migration of a
peak from the site l to l + 1 in the dimer model [1], [2].
Its dynamics is governed by

iφ̇l = φl+1 + |φl|2φl
iφ̇l+1 = φl + |φl+1|2φl+1

(5)

These equations are obviously integrable and can be
solved analytically [1], [2] and the solution reproduces
the the intersection path of A = const and H = const as
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a function of time. The solution of the equations (5) is

|φl| = r
√

(1 + cn(2t, r2/2))/2

|φl+1| = r
√

(1− cn(2t, r2/2))/2

cosα = r2

4 sn(2t, r2/2)
sinα = −dn(2t, r2/2)

(6)

while ψ has the constant speed ψ̇ = 3r2/4. This is exactly
the intersection path (4) where ν(t) = 1

2
(1−cn(2t, r2/2))

has been determined. Fig.6 shows that |φl| decays
monotonically from r to 0 while |φl+1| grows. cosα in-
creases from 0 to its maximum r2/4 and decays to 0 sub-
sequently, which is only possible if the initial amplitude
is
√
a ≤ 2. α grows from −π/2 to a value that is less

or equal 0 and decays again to its initial value. The so-
lution of (6) is very close (Fig.6 where r = 1.96) to the
numerical data from the simulation of Fig.1.

FLUCTUATIONS AND MIGRATIONS OF THE
EXCITATION

The two-site model neglects all energy- and particle
contributions except for the donor and the acceptor site,
which leads to a qualitative shortcoming of this idealized
description of peak-migration in the DNLS equation: The
orbit (6) that connects the two localized excitations of the
dimer is periodic in time, while sufficiently high (r > 1)
localized excitations of the full DNLS chain are pinned at
one lattice site, before its particles are shifted suddenly
to a neighboring lattice site where the excitation is again
pinned for a long time. It is necessary to investigate
the interactions between the peak and its low-amplitude
environment to explain why the peak is locked at one
lattice site for most of the time and why it can suddenly
move to a neighboring site.

Stationary excitations and breathers

Excitations that are stationary in a frame rotating with
the frequency ω are solutions of

0 = φn+1 + φn−1 + |φn|2φn + ωφn (7)

Reading this set of equations as a map (φn−1, φn) →
(φn, φn+1) with the lattice-site index n, localized exci-
tations correspond to heteroclinic orbits connecting the
fixed points φ−∞ = 0 and φ+∞ = 0. Equation (7) is
equivalent to the condition

0 =
∂

∂φ∗n
(H + ωA)

for extrema or saddle points of the energy where the La-
grange parameter ω constrains the particle number A.
One well-known localized real solution of (7) is site-
centered, i.e. the amplitudes decay symmetrically at the
left and the right of the site with the maximum ampli-
tude (solution cp in Fig.7). This central-peak solution is
stable, as it has a maximum of energy for a given par-
ticle number. Central-peak solutions at different lattice
sites correspond to different elliptic fixed points in phase
space. There is no path connecting these islands while
conserving both energy and particle number, and a per-
fect central-peak solution will not move at all. However,
such a migration might proceed along a path in phase
space where energy and particle number are not con-
served if some external force changes these two quantities
temporarily. The deviation from the original amount of
these quantities is maximal at the midpoint of the migra-
tion, where l and l+1 have the same amplitudes, and the
solution has the shape of the solution cb in Fig.7. This
unstable solution of (7) is a saddle-point in the energy
under the constraint of fixed A. It has a lower energy
(line cb in Fig.7) than the site-centered solution (line
cp in Fig.7) with the same particle content. Assuming
a migration conserves A but not H, the energy has to
decrease at least to the line cb intermediately. Alter-
natively, the line cb can also be reached by increasing
the particle number temporarily. Any migration path re-
quires a change of either energy or particle number that
bridges the gap between the lines cp and cb. Alternative
migration paths that do not pass through the central-
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bond state have to overcome an even larger gap.
This gap impedes the migration of central-peak solutions
for all values of A and the excitation cannot overcome
the gap spontaneously without an external cause. This
energy- and particle-balance concerns the localized exci-
tation as a whole, while the gap obtained in Fig.5 con-
cerns only the central two lattice sites. Fig.5 and Fig.7
yield independent conditions for a migration: At some
point during the migration, the energy of the central two
oscillators has to be below the line ib of Fig.5, while the
energy of the broader structure has to be below the line
cb of Fig.7.
This gap is smaller for ’breather’ solutions which have
an energy slightly below the line cp. These solutions are
similar to the central-peak solution, but their amplitude
has a ’breathing’ behavior corresponding to periodic or-
bits close to the elliptic fixed point that represents the
site-centered solution. Fig.7 shows the energies and par-
ticle numbers of breathers that emerge from an initial
condition with a peak at one lattice site and a zero am-
plitude everywhere else. The total energy of this central
site and the six neighbors at its left and its right are
plotted for 100 integration steps of 0.25 time units each.
It turns out that breathers with particle numbers up to
A ≈ 4 have a lower energy than a central-bond solution
with the same particle number, and they are more likely
to migrate.

Statistical nature of localized excitations

In a recent paper [9] it has been shown that local-
ized excitations in the DNLS equation are statistical phe-
nomena that emerge naturally for a great variety of ini-
tial conditions. The DNLS equation is a non-integrable
Hamiltonian system, and its solutions can be understood
from the statistical ensemble related to its two conserved
quantities. Its analysis shows that its state of maximum
entropy for many cases (E > 0 and A/N small) consists
of low-amplitude waves at almost all lattice sites, and
only at a few scattered high-amplitude excitations. In
this state, the low-amplitude waves absorb the amount
E< of energy and A< of particles, while the peaks absorb
the amounts E> and A>. The sums E = E< + E> and
A = A< + A> are the total conserved quantities. The
system’s total entropy has two contributions, one from
the low-amplitude waves,

S< = N ln(
4A2

< − E2
<

4A<N
) (8)

and one from the localized high-amplitude excitations
S>. It turns out that S< yields the bulk of the en-
tropy provided that the system has a low particle-density
A/N . The maximum of the total entropy corresponds to
a state where the low-amplitude waves absorb nearly all
particles A< ≈ A, but have an energy that is close to

zero E< ≈ 0. In the same time, the peaks absorb any
surplus of energy E> ≈ E using a minimum amount
of particles. The central-peak solution is the thermody-
namically ’ideal’ excitations since it absorbs more energy
than any other solution using a given number of parti-
cles. The temperature and the chemical potential of the
waves maintain the excitations of this type. This thermo-
dynamic force leads to a local approximate conservation
of the amount of energy and particles in each of the ex-
citations.

Fluctuations causing a migration

Localized solutions randomly exchange particles with
the embedding low-amplitude waves, so that the particle
and energy contents of the localized excitations is not
constant, but fluctuates constantly. The energy of the
low amplitude waves is zero in the equilibrium, and their
entropy reduces by

∆S< = −∂S<
∂A
|E=0∆A = −N ∆A

A

if ∆A particles are transfered to the localized excita-
tions. Huge particle transfers are rare since huge fluc-
tuations of the entropy are rare. These fluctuations are
one of the possible forces that can allow the localized
structure to bridge the gap between its initial energy and
particle number and these quantities at an intermediate
stage during the migration. Fig.8 compares the fluctu-
ating amount of energy and particles (irregular line) in
the localized excitation from Fig.1 with the energy and
particles of stationary central-peak and central-bond ex-
citations (the lines cb and cp are the same as in Fig.7). In
Fig.8b, the energy and particle contents of the excitation
is measured in a patch of 13 lattice sites with the peak at
the center in a period of 60 time units at the migration.
The energy content changes relatively little compared to
the particle number, which is due to the low energy of
the low-amplitude waves. The energy-particle trace of
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the same as in Figs.5 and 7.
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FIG. 9: (a) |φ126| versus |φ125| for the migration of Fig.1.
(b) A similar migration that is triggered by externally setting
the acceptor amplitude |φl+1| to zero at one point during the
numerical integration.

the excitation is in the region of the central-bond solu-
tion (line cb), well below the line cp for the stationary
central-peak solution. For a migration, the trace has to
be below the line cb, which is the case for much of the
time. The actual migration corresponds to the largest
temporary increase of the particle number, which reaches
A = 5.5 for a short time.
In addition to this condition on the total energy and par-
ticle number of the excitation, enough particles need to
be available in the center of the excitation during the
migration. Fig.8a gives the energy and particles of the
donor and the acceptor site and the central bond in com-
parison to the lines ip and ib of the dimer of Fig.5. Again,
a migration is only possible if the trace of the excitation
is below the line ib. Unlike Fig.8a, this is not fulfilled
for most of the time and the line cb is crossed only for
a short time during which the migration actually takes
place. This barrier from the center of the excitation is
the one that is more difficult to overcome.
This explains pinning and migration of peaks as statis-

tical processes: Depending on the gap between the lines
cp and cb as well as ip and ib, an amount ∆A of particles
has to be transfered from the fluctuations to the coherent
excitation. This amount is smaller for breathing peaks
with a lower energy per particle (Fig.7). The gap of par-
ticles between the site-centered excitation and the bond-
centered excitation increases with the height of this ex-
citation, while it is smaller for breathing peaks that have
a lower energy. Migrations become less likely with the
height of the peak as this would require a huge and un-
likely fluctuation in its content of particles. On the other
side, the probability of such fluctuations increases with
the amplitude of the waves in the background (Fig.1c).
Fig.9a shows the trace of (|φl(t)|, |φl+1(t)|) during the
migration of Fig.1. Before the migration, most particles
are gathered at the site l with (|φl(t)| ≈ 2), while the
amplitude at l + 1 is small and the amplitudes at both
sites fluctuate irregularly. Then, following a short-lived
increase of the amplitude at l, the particles migrate to
l+ 1. The localized excitation is trapped at this new site
until another huge fluctuation allows it to move again.
The migration orbit can be understood as a heteroclinic

(a) (b)
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FIG. 10: (a) Collision of a peak with the height |φ| = 1.95
with a soliton resulting in a migration of the peak by one
lattice site. (b) Collision of a peak with the height |φ| = 2.35
with a soliton leads to no migration.

connection of the two tangles representing localized ex-
citations. The migration starts when the trajectory ac-
cidentally approaches this orbit, which requires a suffi-
ciently low energy and high particle number. During the
migration when |φl| and |φl+1| both are larger than their
neighbors, this orbit is well approximated by the dimer
orbit (6). As it approaches the acceptor site the inter-
action with low-amplitude waves is again important and
the the trajectory leaves the dimer orbit. The final state
is again a tangle at l + 1.

Trigger of migrations

Migrations can be triggered externally by setting the
trajectory at a the starting point of the heteroclinic con-
nection, rather than waiting for the system to reach this
point accidentally. This is shown in Fig.9b where the lo-
calized excitation rests at the site l when φl+1 is suddenly
set to zero. This reduces the energy of the central bond
and the system is at the starting point of the dimer orbit
(6), so that it migrates and becomes entangled at l+1 in
a way that is similar to the migration caused by random
fluctuations of Fig.9a.
An alternative way of triggering a migration is to change
the phase of the acceptor site. The phase difference of
the donor and the acceptor is π/2 at an early stage of the
dimer solution (6), while the phase difference of the cen-
tral peak and its neighbors is zero for the central-peak
solution cp (Fig.7). Changing the phase of one of the
neighbors by at least π/2 turns this site to an acceptor,
so that the peak migrates. This however reduces the en-
ergy of the excitation after the migration.
Another possibility to trigger a migration is the collision

with a low-amplitude solitary wave. These solitons can
be produced by exciting a few neighboring oscillators,
and they can also occur in not fully thermalized low-
amplitude waves (e.g. in the simulation of Fig.1). Such a
wave provides particles with a low energy content locally
to the the peak which can allow the peak to cross the
lines ib and cb so that it enters the domain where it can
move. This triggers migrations more efficiently than in-
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teractions of the peak with low-amplitude random waves.
Fig.10 shows the impact of such collisions for peaks with
two different heights. The lower peak |φ| ≈ 1.95 moves
by one lattice site after the collision. The higher peak
|φ| ≈ 2.35 remains at the lattice site, and the solitary
wave is reflected. Due to its height, the gap between the
lines ip and ib and between cb and cp are larger than
the amount of particles provided by the low-amplitude
soliton. The amplitude of the peak increases in either
case, as both energy and particles are absorbed from the
incoming soliton. The reflected or transmitted solitons
carry the surplus of these quantities, therefore the colli-
sion changes their shape and speed.

CONCLUSIONS

The effect of lattice-pinning of excitations depends on
the amount of the two quantities H (energy) and A (par-
ticles) that they absorb locally. High-amplitude excita-
tions with a high ratio of energy per particle cannot move
as this would require intermediate changes of this ratio
whenever the excitation has its center between two adja-
cent lattice site.
The energy- and particle balance of these migrations has
been considered in two different ways, firstly only for
the two sites (donor and acceptor) with the highest am-
plitude during the migration, secondly for the broader
structure of the excitation including adjacent sites with
lower amplitudes. The simple model of only two sites
gives a threshold beyond which no continuous migration
path for localized excitations exists (Fig.5). Below this
threshold, the trajectory of the migration can be com-
puted analytically (Fig.3). Within a short period of time
most of the particles move by one lattice site, while the
total particle number in the dimer remains almost con-
stant (Fig.2). The energy and particle balance for the
broader region of the excitation gives site-centered exci-
tation (cp in Fig.7) as stable solutions of the DNLS. No
path conserving both energy and particles connects such
an excitation with a similar excitation at neighboring lat-
tice sites, so they are unable to migrate spontaneously.
The fact that numerically found excitations are very sim-
ilar in shape to these cp excitations shows their statisti-
cal nature that has been studied in detail in [9]. Excita-
tions constantly interact with surrounding low-amplitude
waves, which leads to growth or preservation of their
height when the energy of the waves is positive, while
they decay in an environment of negative-energy waves.
Hence, this formation or destruction of excitations de-
pends on the sign of the total energy and it increases
the system’s entropy. The thermodynamic potentials of

waves with a positive energy drive the excitations to-
wards the central-peak state that absorbs a maximum
amount of energy using a minimum amount of particles.
This thermodynamic force of the wave-background is re-
sponsible for the local conservation of energy and parti-
cles in the excitation, which results in the pinning of the
excitation.
On the other side, the interaction between waves and the
excitation also leads to fluctuations of these quantities
which can allow the excitation to migrate to a neigh-
boring lattice site. If the surrounding waves have a suf-
ficiently high amplitude, the fluctuations can allow the
excitation to follow a migrational path on which the two
quantities are not conserved locally. Such a migration is
caused by a random process, and it ends when the exci-
tation is again entangled at its new location by its high
energy.
This can be used to trigger a migration externally. Three
mechanisms for this have been discussed: Either, the
phase or the amplitude of the acceptor can be changed,
or a low-amplitude soliton can be brought to a collision
with the excitation. The main point of these switching
mechanisms is that they decrease the ratio of energy per
particle and that they set the trajectory at the starting
point of a heteroclinic connection between the donor and
the acceptor site.
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