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Intermittency as a consequence of turbulent transport in nonlinear systems
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Intermittent high-amplitude structures emerge in a damped and driven discrete nonlinealirggrequa-
tion whose solutions transport both energy and particles from sources to sinks. These coherent structures are
necessary for any solution that has statistically stationary transport properties.
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Turbulent flow that transfers energy from a stirring rangeand particle numberrealization of astatistically steadtate
at large scales to the dissipation range at small scales consistsmands the existence of high-amplitude coherent structures
of dissimilar components, a broad spectrum of eddies anbiecause they play a crucial role in balancing the energy flux
randomly occurring, intermittent coherent structures. Thebudget. We show that a single cascade of weakly interacting
first cascade leads to Kolmogorov-like finite-flux power Waves that transport particles from a source to a sink leads to
spectra. The second component is particularly visible in thé steady net loss of energy in the system. Any steady solution
anomalous short-scale behavior of the higher order moment€quires contributions from the nonlinear terms in order to
of velocity differences. Compared to fully developed three-Offset this loss in energy. This is achieved by intermittent
dimensional turbulence, it is easier to quantify these tw(j‘ormation and destruction of high-amplitude structures. Flg-
components in turbulent systems of weakly coupled disperure 1 shows the intermittent emergence of peaks for a dis-
sive waves. In this case, the Kolmogorov-Zakharov spectrungrete nonlinear Schdinger equation,
is a stationary finite flux solution of kinetic equations that
follpw from three and four wave resonances of weak inter- i, + ¢+ dn_1— 2P+ ¢§¢: =F($,t)—D(,1),
actions. The second component emerges since the wave tur- (1)
bulence approximatiofl] is almost never valid at very low

and very high wave numbers where the “weak” coupling for a chain of complex oscillatorsD is a short-wavelength
approximation breaks down, and leads to the emergence @famping term wherea$ drives the system on long space
fU”y nonlinear Structure$2]. In Short, despite the fact that scales. F|gure(h) disp|ays the typ|ca| |Ong_time behavior of
the amplitudes are, on average, small, the weakly nonlinear |2 jn a sector of 30 lattice sites from a chain ¥f=512
dynamics can lead to intermittent localized high-amplitudeyscillators with periodic boundary conditions over 30 time
events and anqmaﬁes in high order moments. It may alsgnijts. |$,|2 is small on average, but high-amplitude struc-
lead to contamination of low order moments and to powefyres emerge locally. The peak shows “breathing” behavior,
spectra which, at least in some wave number ranges, aighich decreases and increases irregularly. Figdog shows
dominated by strongly nonlinear events. Nowhere is thispe average density of oscillators with amplitudd| for

McLaughlin, and TabakCMMT) [3] (later confirmed by Za-

kharov et al. [4]) on damped, driven and freely decaying (@) (b)
weakly nonlinear dispersive one-dimensional wave systems. ,
Indeed, CMMT found that, in damped and driven systems, ot Py 10g;0p
there were some situations in which the nonlinear solutions ' : ’
dominated at almost all scales. In the freely decaying state,
they found that Kolmogorov-Zakharov spectra were much
more likely to appear. This of course was disappointing be-
cause the strength of the Kolmogorov-Zakharov solution of
the undamped, undriven kinetic equation is that it describes
exactly what would be expected if an energy source at
=0 feeds at a constant flux rate through an inertial range to
a viscous sink ak=os. ”
The purpose of this paper is to demonstrate in a simple ! 2 W
but representative model that in driven, damped systems in fiG. 1. Numerical integration of the damped and driven discrete
which there are fluxes of two conserved densitiesergy  nonlinear Schidinger equation(a) | 4,2 for a sector of 30 oscil-
lators over 30 time units with strong dampin@) Density of sites
with amplitude|¢| as a function of|¢| for weak and for strong
*Email address: benno@mpipks-dresden.mpg.de damping and a Gaussian fit of the density for weak damping.

weak damping

strong
damping
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|¢| is Gaussian, but for largef#| the intermittent high- @) (b)
amplitude structures lead to slower non-Gaussian decay. In le, 12 2 log [o|?
the weakly damped system, the density increases slightly for 10
high amplitudes so that there is a small hump nefge=2.

The number of these intermittent events increases with the \

driving force, but the hump remains in the vicinity |¢f=2. Souparion 1 S
In the simulations we use time-perioddkicks as damp- W ‘
ing and driving force® and ¥, which allows a simple con- nonequiliorium
trol of the energy input and output: The driving increases the 9 B T o0 X T
homogeneous modey,— (1+\ £)cq, and the damping de-
creases modes on a short space scale di(ke(]_—)\D)ck FIG. 2. (a) Spectrum of a weakly damped nonequilibrium sys-

wherec, = (1/N)= ¢, exp(kn) and wave numbek is in the ~ t€m compared to a similar Iow-e_nergy thermodynarr_lic spectrum
Brillouin zone[0,27]. In numerical studies we apply damp- [B(@(K)+ 7)]™* of the corresponding undamped undriven Hamil-
ing to the short-wavelength modes withrB<k<97/8, so tonlaq system.(b) Logarithmic plot of the spectrum for st.rong
that the impact of damping does not decrease according t%amplng. The steps of the spectr&kat7#/8 result from damping.
the size of the system. Analytical studies are simplified by _ _
restricting damping to modke= . D and F are zero in the +A¢ndh =2\ =N|co|* while the damping changes the par-
intervals of one time unit between the time-periodic kicks.ticle number byAp A=—2\pN|c,|? for small values of
No important changes are found for shorter intervals betweehzp- Consequently, there is a flow of particles from the
the kicks, or for continuous driving and damping. source ak=0 to the sink ak= 7, and the power spectrum
The dynamics between the kicks are governed by the nori¥ig. 2a)] decays according to the wave number. With most
linear Schidinger equation that is derived asd, power gathered at .Iow wave nqmbers, the spectrum is similar
— 9H/d* from the Hamiltonian to a thermodynamic spectruffrig. 2@)] of the correspond-
n ' ing undamped undriven Hamiltonian system with low en-
H=H,+H, ergy. The high-amplitude structures are generated by the
same mechanism in such an isolated Hamiltonian system and
_ % % * 1 ) in the damped driven system where the permanent particle
_; 2¢ndn — bndnia~ i ¢’n+1‘5§ P flow maintains the bias of the spectrum. The spectrum de-
cays even exponentially for strong damping forces Fip).2
2 Particle loss and gain are balanced when the flow in a suffi-

The modulus square norm or particle number, ciently large system is constant so that

AA+APA=0, (4)

A=2 ¢udh =N ol 3 N
n k or AAcol?>=\p|c,|2. The driving parametei » and the

is a second quantity that is conserved. In recent stydies damping parametex, regulate the particle number and the

o o . article flux of the system. By choosing the driving param-

oo o o ot oeasras e o bler 9~ AW e ool a constan o of

ping g gh-amp! ticles, A rA=AA, into the system in the numerical simula-
structures as a statistical consequence of thermalization Ul s Damping parameter- is fixed. For a strong dampin
der constraint of its twaconservedjuantities. These peaks o for.cin rStiogxp — e 2) Z?Nith 2 <'1 it follows %rom Ep g
are generated in a self-focusing process of Iow—amplitud%Af) thatlg = ’|cD|_a$1d 7 € ’ q:
waves with long wavelengths and low energy. A typical ini- m ~ €10
tial condition from which high-amplitude peaks emerge is N cnl = ennlc 5
the Rayleigh—Jeans distribution of powgn|?=[B(w(k) ACol = eXslesl. ©
+7)]~* with positive temperatur@™*. y is the chemical  The input and output of particles also change the quadratic
potential, andv(k) =2—2 cosk is the frequency. As the sys- coupling energy and the quartic energy. Gains and losses

tem approaches its state of maximum entropy, the spectrugigain have to match in a stationary nonequilibrium state so
of low-amplitude fluctuations becomes flat so that the powegnat

is equipartitioned on all mode§3—0,y—c). During this
transformation of the low-energy spectrum to an equiparti- AH,+AMH,+ApH+ ApHL,=0. (6)
tioned spectrum, stable high-amplitude peaks with negative
energy emerge as a by-product of the production of entropy In order to understand the role of the strongly nonlinear
in the low-amplitude waves. No such peaks emerge fronterms in energy flow, we analyze how it is divided among
low-amplitude short waves with high energy. these four terms. The change in quadratic coupling energy,
In contrast, the long time behavior of solutions of theH,=NXZw(k)c,cy , is given by the flux of particles times
damped and driven system is governed, not by the values dfequencyw(k). The influx of particles through the driving
H and A, but by thefluxesof both quantities. Each driving force leads to zero energy influX,-H,= w(0)AA=0, since
step F changes amplitude,, by A¢,=\rCq, so that the «(0)=0. The damping leads to loss of coupling energy,
total number of particles increases by:A=3,¢,A 5 ApH,=—w(m)AA, with w(m)=4. Consequently, the par-
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This predominance of,H, over A /H, [i.e., A JRe(docy)
<\pRe(d,c*)] follows from \ £ co| <\ p|c,| according to
Eqg. (5) and from|d,.|~O(|dy|). The second relation is due
to the spiky shape of¢,|?¢, that leads to a flat power
spectrum. In addition, the phasesdf andc,, are correlated
by the phase velocity of the peaks whilgcy oscillates ran-
domly since it is governed by low-amplitude fluctuations.
A H, yields a significant negative contribution only for high

FIG. 3. (8) Change ofH, due to damping and ofi, due to particle fI_uxA_A and weak damping force,, [at A =0.02,
damping and the driving force as a function of tintie) Time av- ~AA=2.5 in Fig. 3b)].

erage of the same energy flows as a function of the particleAlaw For all other cases, both sH, and A;H, are zero or
and the damping constait . close to zero, so Eq6) reduces toA p,H,~—ApH,. This

yields Re(c%d,)~4ckc,, or the inequality,

3000 t 3500

ticle flux leads to a net loss of coupling energy &®H,

=AH,+ApH,=—4AA. This loss in energy must be bal- |dA/=4[c,|. )
anced by a gain in energy in the nonlinear tetfimto main- _ i i _

tain a stationary state of nonequilibrium. The viscosity € importance of nonlmeant;)’sDH‘l in the balance of en-
changes nonlinear energy,= — (1/2)= ¢ﬁ %2 g9 ergy is reflected in the system’s first three moments: By de-

fining ¥,=¢(—1)", the inequality, Eg. (7), reads
ApH,=2NpNRed,c¥), 2|l *¢n| =4|Z 4| . The first moment|= |~ JAA in-
creases with the particle flux. The second momehy,|?

where d,= (1/N) 2| ¢4|2¢,€". Driving changes this en- =A is the particle number, which is small if the system is

ergy contribution by strongly damped and weakly driven. Equati@h shows that
the third moment exceeds the first moment, so the distribu-
AH,= =2\ NRgdocy). tion is strongly non-Gaussian. High-amplitude excitations

[Fig. (@] that lead to the non-Gaussian tails in Figb)lare
Figure 3a) showsApH,, A H, andApH, as functions  necessary to maintain a stationary state of nonequilibrium
of time for a chain of 512 oscillators for a total particle flux under the flow of energy and particles.
per time unit ofAA=0.512 and a strong damping to forcing  To understand how the high-amplitude structures balance
ratio wherexp,=0.2. This corresponds to the simulation in the energy flow, we compute the input and output of energy
Fig. 1(a), the strong damping case in Figsblland 2b) and  and particles as functions of the amplituge of the oscilla-
to Figs. 4c) and 4d). The fluctuations indicate single col- tors. The driving kick feeds a numbeh ra(|#|)d| |
lapse events which have smaller relative strength for large= 3 . ;-4 |<|4/+ a4 2RE(#nA £¢b;) Of particles to those
size systems. Figure(ly shows the time average dfpH>,  |attice sites where the amplitude is betwel#l and | 4|
AzH,, and ApH, as functions of damping coefficient, | q|4|. The total particle gain used in Edd) is A A
d particle fluxAA, whereas the weakly driven cas&A _ (> e ;
and p , : _ ; =[5Ara(|¢|)d|4|. Similarly, the forcing changes the non-
.—0.512) corres_ppnds to that in all other 5|_mulat|9qs. Thelinear energy at these lattice sites hyzhs(|¢|)d|é|
impact of the driving force on energyH,~0 is negligible -3 2l |2 * A he i
; — <n|g|<|p,<|¢|+d|¢| |¢’n| Re(¢,Ax¢,). The increments
compared to the two effects of dampinyp,H, and ApH,. ) Pn .
in damping Apa(|¢|) and Aphy(|¢|) are defined analo-

(@) o) gously. Arhy(|¢]) is again zero, and Aphy(|¢|)
=w(m)Apa(|¢|). Figure 4 shows the time average of the
influx and outflux of particles and energy as functionsgif

<Arafl) >
2w <Aph10)> In the weakly damped cadéigs. 4a) and 4b)] with A,
° =0.02 and AA=0.512]. The particles are fed into the
< Apa(lol)> system mainly at those lattice sites where the amplitude is
o K dioho moderatd|$|~0.5 in Fig. 4a)], while particles are removed
LY mainly at sites with high amplitudes d&|~2. While the

(d)

input of particles has a negligible effect on the balance of
nonlinear energy, the output of particles leads to a gain in
energy that peaks a#|~2. Remarkably, a very small num-

y ber of sites with high amplitudes is responsible for practi-

cally the total outflux of particles and the corresponding
o% feedback of nonlinear energy.
L S Aehylo> This gain in energy can be seen for the most simple case
o of an isolated real peakj,= x5, , whose height decreases
FIG. 4. Average loss and gain of particlgs) and (c)] and of by Apd=\pc,<x during the damping kick, so the cou-
nonlinear energy(b) and (d)] as functions of the amplitudgsl.  Pling energy changes b¥pH,=—8xAp¢. This increases
(a),(b) Weak damping caség),(d) strong damping case. the nonlinear energy by pH,=2x3Ap¢. The fluxes are

<Aphy(lol)>
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balanced if the peak amplitude is=2, which agrees with amplitude structureg5], and it is the role of coherent struc-
the results of Figs. @) and 4b). Particles removed from the tures to balance the energy input and output by exploiting the
tip of the peak have to be replaced constantly through th@onlinear component of the energy. To offset this loss in
driving mode atk=0. During Hamiltonian evolution, the energy, high-amplitude structures that contain a significant
focusing process increases the peak again while short-wavgnount of negative nonlinear energy must be formed and
fluctuatipns are radiqted. _ _destroyed. Energy is transferred from nonlineafltyto cou-

The input of particles in the strongly damped equationpling H, during peak growth, and pruning or destroying the
[Figs. 4a) and 4b) with \p,=0.2, AA=0.512] is maximal peaks increases the system’s total energy. The peaks are es-
for low amplitudes of|$|~0.4, similar to in the weakly sentially the pipes through which energy and particles flow
damped case in Fig(4. Damping leads to a significant loss under the constraints of balance conditions.
of particles af#|~1.5, and to a tiny loss of particles in the  Opviously, this effect follows purely from the dispersion
domain of low-amplitude fluctuations &|~0.2, but, para- and the nonlinearity, and it is not restricted to the one-
doxically, also to particle gain 4|~0.7. While there is still - dimensional discrete system of our simulations. Similar be-
a net loss of particles, this partial recycling of particles in-havior was found[2] for the two-dimensional continuous
creases the ratio of energy gain per particle loss. This allowgcusing nonlinear Schdinger equation when force is ap-
the system to satisfy the balance condition, Ef), with @  plied at a midrange wave number and damping at large wave
peak amplitude less thgg|=2. As a simple model for this numbers. This leads to energy flux toward high wave num-
mechanism we assume two peaks at ditand|+3 where  pers, and to inverse particle flux to low wave numbers. The
&1=x>§&= ¢, 3 are real and positive. A damping kick de- particle flux builds condensates from which collapsing soli-
creases the higher peak #h=x—Ap¢ and increases the tons emerge that carry particles to the dissipation scale and
lower peak tog,,3=£+Apd. The decrease of the higher feed both particles and energy back into the wave field at
peak ¢, models the particle loss &p|~1.5 in Fig. 4c) and  these high wave numbers. With almost Gaussian statistics of
the increase of the lower peals . 3 represents the gain of the waves and Poisson distribution of the intermittent coher-
particles at|¢|~0.7. The coupling energy loss i&p,H,  entevents, the system resembles a two species gas. The pres-
=-8(x—£&)Ap¢ and the nonlinear energy gain &spH,  ence of collapses does not appear to affect low moment sta-
=2(x*— &%) Ap¢. The gain of nonlinear energy can out- tistics of two- or three-dimensional systems if the damping is
weigh the loss of coupling energy far>2/1/3. sufficiently strong, whereas collapses contaminate the power

In summary, coherent structures are an essential compapectrum generated by wave—wave interaction in noninte-
nent of the transport of particles from large scales to smalfrable one-dimensional systems. The important point to
dissipation scales. The particle flow leads to a steady loss aftress is that no particles would be dissipated and no steady
coupling energy, so the fluctuations have a low ratio of enstate would be achieved without strongly nonlinear col-
ergy per particle. Such long-wave fluctuations form high-lapses.
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