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Intermittency as a consequence of turbulent transport in nonlinear systems
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Intermittent high-amplitude structures emerge in a damped and driven discrete nonlinear Schro¨dinger equa-
tion whose solutions transport both energy and particles from sources to sinks. These coherent structures are
necessary for any solution that has statistically stationary transport properties.
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Turbulent flow that transfers energy from a stirring ran
at large scales to the dissipation range at small scales con
of dissimilar components, a broad spectrum of eddies
randomly occurring, intermittent coherent structures. T
first cascade leads to Kolmogorov-like finite-flux pow
spectra. The second component is particularly visible in
anomalous short-scale behavior of the higher order mom
of velocity differences. Compared to fully developed thre
dimensional turbulence, it is easier to quantify these t
components in turbulent systems of weakly coupled disp
sive waves. In this case, the Kolmogorov-Zakharov spect
is a stationary finite flux solution of kinetic equations th
follow from three and four wave resonances of weak int
actions. The second component emerges since the wave
bulence approximation@1# is almost never valid at very low
and very high wave numbers where the ‘‘weak’’ couplin
approximation breaks down, and leads to the emergenc
fully nonlinear structures@2#. In short, despite the fact tha
the amplitudes are, on average, small, the weakly nonlin
dynamics can lead to intermittent localized high-amplitu
events and anomalies in high order moments. It may a
lead to contamination of low order moments and to pow
spectra which, at least in some wave number ranges,
dominated by strongly nonlinear events. Nowhere is t
more evident than in the illuminating studies of Cai, Majd
McLaughlin, and Tabak~CMMT! @3# ~later confirmed by Za-
kharov et al. @4#! on damped, driven and freely decayin
weakly nonlinear dispersive one-dimensional wave syste
Indeed, CMMT found that, in damped and driven system
there were some situations in which the nonlinear soluti
dominated at almost all scales. In the freely decaying st
they found that Kolmogorov-Zakharov spectra were mu
more likely to appear. This of course was disappointing
cause the strength of the Kolmogorov-Zakharov solution
the undamped, undriven kinetic equation is that it descri
exactly what would be expected if an energy source ak
50 feeds at a constant flux rate through an inertial rang
a viscous sink atk5`.

The purpose of this paper is to demonstrate in a sim
but representative model that in driven, damped system
which there are fluxes of two conserved densities~energy
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and particle number!, realization of astatistically steadystate
demands the existence of high-amplitude coherent struct
because they play a crucial role in balancing the energy
budget. We show that a single cascade of weakly interac
waves that transport particles from a source to a sink lead
a steady net loss of energy in the system. Any steady solu
requires contributions from the nonlinear terms in order
offset this loss in energy. This is achieved by intermitte
formation and destruction of high-amplitude structures. F
ure 1 shows the intermittent emergence of peaks for a
crete nonlinear Schro¨dinger equation,

i ḟn1fn111fn2122fn1fn
2fn* 5F~f,t !2D~f,t !,

~1!

for a chain of complex oscillators.D is a short-wavelength
damping term whereasF drives the system on long spac
scales. Figure 1~a! displays the typical long-time behavior o
ufnu2 in a sector of 30 lattice sites from a chain ofN5512
oscillators with periodic boundary conditions over 30 tim
units. ufnu2 is small on average, but high-amplitude stru
tures emerge locally. The peak shows ‘‘breathing’’ behav
which decreases and increases irregularly. Figure 1~b! shows
the average densityr of oscillators with amplitudeufu for
weak and for strong damping forces. The density for sm

FIG. 1. Numerical integration of the damped and driven discr
nonlinear Schro¨dinger equation:~a! ufnu2 for a sector of 30 oscil-
lators over 30 time units with strong damping.~b! Density of sites
with amplitude ufu as a function ofufu for weak and for strong
damping and a Gaussian fit of the density for weak damping.
©2004 The American Physical Society06-1
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ufu is Gaussian, but for largerufu the intermittent high-
amplitude structures lead to slower non-Gaussian decay
the weakly damped system, the density increases slightly
high amplitudes so that there is a small hump nearufu52.
The number of these intermittent events increases with
driving force, but the hump remains in the vicinity ofufu52.

In the simulations we use time-periodicd kicks as damp-
ing and driving forcesD andF, which allows a simple con-
trol of the energy input and output: The driving increases
homogeneous modec0→(11lF)c0, and the damping de
creases modes on a short space scale likeck→(12lD)ck
whereck5(1/N)(nfn exp(ikn) and wave numberk is in the
Brillouin zone@0,2p#. In numerical studies we apply damp
ing to the short-wavelength modes with 7p/8<k<9p/8, so
that the impact of damping does not decrease accordin
the size of the system. Analytical studies are simplified
restricting damping to modek5p. D andF are zero in the
intervals of one time unit between the time-periodic kick
No important changes are found for shorter intervals betw
the kicks, or for continuous driving and damping.

The dynamics between the kicks are governed by the n
linear Schro¨dinger equation that is derived asi ḟn

5]H/]fn* from the Hamiltonian,

H5H21H4

5(
n

2fnfn* 2fnfn11* 2fn* fn112 1
2 (

n
fn

2fn*
2 .

~2!

The modulus square norm or particle number,

A5(
n

fnfn* 5N(
k

ckck* , ~3!

is a second quantity that is conserved. In recent studies@5#
we have shown that this isolated Hamiltonian system with
damping and driving force forms localized high-amplitu
structures as a statistical consequence of thermalization
der constraint of its twoconservedquantities. These peak
are generated in a self-focusing process of low-amplit
waves with long wavelengths and low energy. A typical in
tial condition from which high-amplitude peaks emerge
the Rayleigh–Jeans distribution of powerucku25@b(v(k)
1g)#21 with positive temperatureb21. g is the chemical
potential, andv(k)5222 cosk is the frequency. As the sys
tem approaches its state of maximum entropy, the spect
of low-amplitude fluctuations becomes flat so that the pow
is equipartitioned on all modes~b→0,g→`!. During this
transformation of the low-energy spectrum to an equipa
tioned spectrum, stable high-amplitude peaks with nega
energy emerge as a by-product of the production of entr
in the low-amplitude waves. No such peaks emerge fr
low-amplitude short waves with high energy.

In contrast, the long time behavior of solutions of t
damped and driven system is governed, not by the value
H and A, but by thefluxesof both quantities. Each driving
step F changes amplitudefn by Dfn5lF c0, so that the
total number of particles increases byDF A5(nfnDfn*
02630
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1Dfnfn* 52lF Nuc0u2 while the damping changes the pa
ticle number byDD A522lDNucpu2 for small values of
lF,D . Consequently, there is a flow of particles from t
source atk50 to the sink atk5p, and the power spectrum
@Fig. 2~a!# decays according to the wave number. With mo
power gathered at low wave numbers, the spectrum is sim
to a thermodynamic spectrum@Fig. 2~a!# of the correspond-
ing undamped undriven Hamiltonian system with low e
ergy. The high-amplitude structures are generated by
same mechanism in such an isolated Hamiltonian system
in the damped driven system where the permanent par
flow maintains the bias of the spectrum. The spectrum
cays even exponentially for strong damping forces Fig. 2~b!.
Particle loss and gain are balanced when the flow in a su
ciently large system is constant so that

DFA1DDA50, ~4!

or lFuc0u25lDucpu2. The driving parameterlF and the
damping parameterlD regulate the particle number and th
particle flux of the system. By choosing the driving para
eter aslF5DA/2Nuc0u2 we obtain a constant flow of par
ticles, DF A5DA, into the system in the numerical simula
tions. Damping parameterlD is fixed. For a strong damping
to forcing ratio,lD5e22lF with e2!1, it follows from Eq.
~4! that ucpu5euc0u and

lFuc0u5elDucpu. ~5!

The input and output of particles also change the quadr
coupling energy and the quartic energy. Gains and los
again have to match in a stationary nonequilibrium state
that

DFH21DFH41DDH21DDH450. ~6!

In order to understand the role of the strongly nonline
terms in energy flow, we analyze how it is divided amo
these four terms. The change in quadratic coupling ene
H25N(v(k)ckck* , is given by the flux of particles times
frequencyv(k). The influx of particles through the driving
force leads to zero energy influx,DFH25v(0)DA50, since
v~0!50. The damping leads to loss of coupling energ
DDH252v(p)DA, with v~p!54. Consequently, the par

FIG. 2. ~a! Spectrum of a weakly damped nonequilibrium sy
tem compared to a similar low-energy thermodynamic spectr
@b(v(k)1g)#21 of the corresponding undamped undriven Ham
tonian system.~b! Logarithmic plot of the spectrum for stron
damping. The steps of the spectra atk57p/8 result from damping.
6-2
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ticle flux leads to a net loss of coupling energy ofDH2
5DFH21DDH2524DA. This loss in energy must be ba
anced by a gain in energy in the nonlinear termH4 to main-
tain a stationary state of nonequilibrium. The viscos
changes nonlinear energyH452(1/2)(fn

2fn*
2 as

DDH452lDNRe~dpcp* !,

where dk5(1/N)(nufnu2fneikn. Driving changes this en
ergy contribution by

DFH4522lFNRe~d0c0* !.

Figure 3~a! showsDDH2 , DFH4 andDDH4 as functions
of time for a chain of 512 oscillators for a total particle flu
per time unit ofDA50.512 and a strong damping to forcin
ratio wherelD50.2. This corresponds to the simulation
Fig. 1~a!, the strong damping case in Figs. 1~b! and 2~b! and
to Figs. 4~c! and 4~d!. The fluctuations indicate single co
lapse events which have smaller relative strength for lar
size systems. Figure 3~b! shows the time average ofDDH2 ,
DFH4, and DDH4 as functions of damping coefficientlD
and particle fluxDA, whereas the weakly driven case (DA
50.512) corresponds to that in all other simulations. T
impact of the driving force on energyDFH4'0 is negligible
compared to the two effects of damping,DDH2 andDDH4.

FIG. 3. ~a! Change ofH2 due to damping and ofH4 due to
damping and the driving force as a function of time.~b! Time av-
erage of the same energy flows as a function of the particle flowDA
and the damping constantlD .

FIG. 4. Average loss and gain of particles@~a! and ~c!# and of
nonlinear energy@~b! and ~d!# as functions of the amplitudeufu.
~a!,~b! Weak damping case;~c!,~d! strong damping case.
02630
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This predominance ofDDH4 over DFH4 @i.e., lFRe(d0c0* )
!lDRe(dpcp* )] follows from lFuc0u!lDucpu according to
Eq. ~5! and fromudpu;O(ud0u). The second relation is du
to the spiky shape ofufnu2fn that leads to a flat powe
spectrum. In addition, the phases ofdp andcp are correlated
by the phase velocity of the peaks whiled0c0* oscillates ran-
domly since it is governed by low-amplitude fluctuation
DFH4 yields a significant negative contribution only for hig
particle fluxDA and weak damping forcelD @at lD50.02,
DA52.5 in Fig. 3~b!#.

For all other cases, bothDFH2 and DFH4 are zero or
close to zero, so Eq.~6! reduces toDDH2'2DDH4. This
yields Re(cp* dp)'4cp* cp or the inequality,

udpu>4ucpu. ~7!

The importance of nonlinearityDDH4 in the balance of en-
ergy is reflected in the system’s first three moments: By
fining cn5fn(21)n, the inequality, Eq. ~7!, reads
u(ucnu2cnu>4u(cnu. The first momentu(cnu;ADA in-
creases with the particle flux. The second moment(ucnu2
5A is the particle number, which is small if the system
strongly damped and weakly driven. Equation~7! shows that
the third moment exceeds the first moment, so the distri
tion is strongly non-Gaussian. High-amplitude excitatio
@Fig. 1~a!# that lead to the non-Gaussian tails in Fig. 1~b! are
necessary to maintain a stationary state of nonequilibr
under the flow of energy and particles.

To understand how the high-amplitude structures bala
the energy flow, we compute the input and output of ene
and particles as functions of the amplitudeufu of the oscilla-
tors. The driving kick feeds a numberDF a(ufu)dufu
5(n:ufu<ufnu<ufu1dufu2Re(fnDFfn* ) of particles to those

lattice sites where the amplitude is betweenufu and ufu
1dufu. The total particle gain used in Eq.~4! is DF A
5*0

`DF a(ufu)dufu. Similarly, the forcing changes the non
linear energy at these lattice sites byDFh4(ufu)dufu
5(nufu<ufnu<ufu1dufu2ufnu2Re(fn* DFfn). The increments

in damping DDa(ufu) and DDh4(ufu) are defined analo-
gously. DF h2(ufu) is again zero, and DDh2(ufu)
5v(p)DD a(ufu). Figure 4 shows the time average of th
influx and outflux of particles and energy as functions ofufu.
In the weakly damped case@Figs. 4~a! and 4~b!# with lD
50.02 and DA50.512]. The particles are fed into th
system mainly at those lattice sites where the amplitude
moderate@uf u'0.5 in Fig. 4~a!#, while particles are removed
mainly at sites with high amplitudes ofufu'2. While the
input of particles has a negligible effect on the balance
nonlinear energy, the output of particles leads to a gain
energy that peaks atufu'2. Remarkably, a very small num
ber of sites with high amplitudes is responsible for prac
cally the total outflux of particles and the correspondi
feedback of nonlinear energy.

This gain in energy can be seen for the most simple c
of an isolated real peak,fn5xdnl , whose height decrease
by DDf5lDcp!x during the damping kick, so the cou
pling energy changes byDDH2528xDDf. This increases
the nonlinear energy byDDH452x3DDf. The fluxes are
6-3
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B. RUMPF AND A. C. NEWELL PHYSICAL REVIEW E69, 026306 ~2004!
balanced if the peak amplitude isx52, which agrees with
the results of Figs. 4~a! and 4~b!. Particles removed from the
tip of the peak have to be replaced constantly through
driving mode atk50. During Hamiltonian evolution, the
focusing process increases the peak again while short-w
fluctuations are radiated.

The input of particles in the strongly damped equat
@Figs. 4~a! and 4~b! with lD50.2, DA50.512] is maximal
for low amplitudes ofufu'0.4, similar to in the weakly
damped case in Fig. 4~a!. Damping leads to a significant los
of particles atufu'1.5, and to a tiny loss of particles in th
domain of low-amplitude fluctuations atufu'0.2, but, para-
doxically, also to particle gain atufu'0.7. While there is still
a net loss of particles, this partial recycling of particles
creases the ratio of energy gain per particle loss. This all
the system to satisfy the balance condition, Eq.~7!, with a
peak amplitude less thanufu52. As a simple model for this
mechanism we assume two peaks at sitesl and l 13 where
f l5x.j5f l 13 are real and positive. A damping kick de
creases the higher peak tof l5x2DDf and increases the
lower peak tof l 135j1DDf. The decrease of the highe
peakf l models the particle loss atufu'1.5 in Fig. 4~c! and
the increase of the lower peakf l 13 represents the gain o
particles at ufu'0.7. The coupling energy loss isDDH2
528(x2j)DDf and the nonlinear energy gain isDDH4
52(x32j3)DDf. The gain of nonlinear energy can ou
weigh the loss of coupling energy forx.2/A3.

In summary, coherent structures are an essential com
nent of the transport of particles from large scales to sm
dissipation scales. The particle flow leads to a steady los
coupling energy, so the fluctuations have a low ratio of
ergy per particle. Such long-wave fluctuations form hig
l,

ov

nd

ar
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amplitude structures@5#, and it is the role of coherent struc
tures to balance the energy input and output by exploiting
nonlinear component of the energy. To offset this loss
energy, high-amplitude structures that contain a signific
amount of negative nonlinear energy must be formed
destroyed. Energy is transferred from nonlinearityH4 to cou-
pling H2 during peak growth, and pruning or destroying t
peaks increases the system’s total energy. The peaks ar
sentially the pipes through which energy and particles fl
under the constraints of balance conditions.

Obviously, this effect follows purely from the dispersio
and the nonlinearity, and it is not restricted to the on
dimensional discrete system of our simulations. Similar
havior was found@2# for the two-dimensional continuou
focusing nonlinear Schro¨dinger equation when force is ap
plied at a midrange wave number and damping at large w
numbers. This leads to energy flux toward high wave nu
bers, and to inverse particle flux to low wave numbers. T
particle flux builds condensates from which collapsing so
tons emerge that carry particles to the dissipation scale
feed both particles and energy back into the wave field
these high wave numbers. With almost Gaussian statistic
the waves and Poisson distribution of the intermittent coh
ent events, the system resembles a two species gas. The
ence of collapses does not appear to affect low moment
tistics of two- or three-dimensional systems if the damping
sufficiently strong, whereas collapses contaminate the po
spectrum generated by wave–wave interaction in nonin
grable one-dimensional systems. The important point
stress is that no particles would be dissipated and no ste
state would be achieved without strongly nonlinear c
lapses.
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