CHEMISORPTION OF EXCHANGE-COUPLED METAL COMPLEXES ON GOLD VIA AMBIDENTATE CARBOXYLATO LIGANDS

B. Kersting^{a,} M. Golecki,^a J. Lach,^a A. Jeremies,^a F. Lungwitz,^b M. Fronk,^b G. Salvan,^b D.R.T. Zahn,^b J. Park,^{c,d} Y. Krupskaya,^d V. Kataev,^d B. Büchner,^d R. Klingeler,^c B. Mahns,^d M. Knupfer,^d P. F. Siles,^d O. G. Schmidt,^d D. Breite,^e B. Abel,^e

^aInstitut für Anorganische Chemie, Universität Leipzig, 04103 Leipzig, Germany ^bSemiconductor Physics Institute, Chemnitz University of Technology, D-09107 Chemnitz, Germany

^cKirchhoff Institute for Physics, University of Heidelberg, D-69120 Heidelberg, Germany

^dLeibniz Institute for Solid State and Materials Research (IFW-Dresden), Helmholtzstrasse 20, 01171 Dresden, Germany

^e Chemische Abteilung, Leibniz-Institut für Oberflächenmodifizierung e. V., D-04318 Leipzig, Germany

A novel strategy for the fixation of redox-active dinickel(II) complexes with highspin ground states to gold surfaces was developed. The dinickel(II) complex [Ni₂L(Cl)]ClO₄ (where L represents a macrocyclic ligand) was reacted with ambidentate 4-(diphenylphosphino)benzoate (dppba) or 4-mercaptobenzoate (mba) coligands to form the carboxylato-bridged complexes [Ni₂L(dppba)]⁺ (2) and [Ni₂L(mba)]⁺ (3), which can both be isolated as perchlorate or tetraphenylborate salts. The auration of the complexes was probed on a molecular level, by reaction with AuCl [AuCl(PPh₃)], which leads to the monoaurated Ni^{II}₂Au^I [Ni^{II}₂L(dppba)Au^ICI]CIO₄ (4) and [Ni^{II}₂L(mba)Au^IPPh₃]⁺ (5), respectively. The bridging thiolate-functions of the N₆S₂ macrocycle are deeply buried and unaffected/unreactive under these conditions. All complexes were fully characterized by ESI mass spectrometry, IR and UV/Vis spectroscopy, X-ray crystallography, cyclic voltammetry, SQUID magnetometry and HF-ESR spectroscopy. Temperature dependent magnetic susceptibility measurements reveal a ferromagnetic coupling between the two Ni(II) ions in **2-5** with *J* values ranging from 15 - 23 cm⁻¹. HF-ESR measurements yield a negative axial magnetic anisotropy (D < 0) which implies a bistable (easy axis) magnetic ground state. The binding of the [Ni₂L(dppba)]ClO₄ complex to gold was ascertained by four complementary surface analytical methods: contact angle measurements, atomic force microscopy, X-ray photoelectron spectroscopy and spectroscopic ellipsometry. The results indicate that the complexes are attached to the Au surface via coordinative Au-P (or Au-S) bonds in a monolayer.

Keywords: Macrocyclic Ligands / High-Spin Molecules / Chemisorption / Ambidentate Phosphorus Ligands / Gold / Surface Complex

References

[1] J. Lach, A. Jeremies, D. Breite, B. Abel, B. Mahns, M. Knupfer, V. Matulis, O. A. Ivashkevich, B. Kersting *Inorg. Chem.* 53, (2014) 10825-10834

[2] M. Golecki, J. Lach, A. Jeremies, F. Lungwitz, M. Fronk, G. Salvan, D. R. T. Zahn, J. Park, Y. Krupskaya, V. Kataev, R. Klingeler, B. Büchner, B. Mahns, M. Knupfer, P. F. Siles, O. G. Schmidt, A. Reis, W. R. Thiel, D. Breite, B. Abel, B. Kersting, *Chem. Eur. J.* 19 (2013), 7787-7801