Orientation of Perfluorinated Phthalocyanines: from Ultra-low Coverages on Hydrogen Passivated Silicon to Thick Layers

M. Gorgoi, G. Gavrila, D.R.T.Zahn
Institut für Physik, Technische Universität Chemnitz, D-09107 Chemnitz, Germany W. Michaelis
IAPC, Universität Bremen, D-28334 Bremen, Germany
D. Schlettwein
Institut für Angewandte Physik, Justus-Liebig-Universität Gießen, D-35392 Gießen, Germany W. Braun
BESSY GmbH, Albert-Einstein-Str. 15, D-12489 Berlin, Germany

Hybrid devices such as organic light emitting diodes, solar cells or thin film transistors, based on phthalocyanine (Pc) materials and silicon receive special attention nowadays. Pcs have a tendency to form ordered layers, however the growth mode may vary significantly on different substrates [1]. Moreover the first layers near the interface seem to have a structure distinct from the thick films. Consequently the present work was directed towards determining the molecular orientation of phthalocyanine monolayers and thin films using polarization dependent X-ray absorption spectroscopy. The organic materials involved are the copper phthalocyanine (CuPc) and its fluorine derivatives: $\mathrm{F}_{4} \mathrm{CuPc}$ and $\mathrm{F}_{16} \mathrm{CuPc}$. Hydrogen passivated p-type (111) oriented silicon provided by Siltronic AG with a doping concentration of approximately $1.5 \times 10^{15} \mathrm{~cm}^{-3}$ was used as the substrate. The passivation process consists of a wet chemical etching in a solution containing HF 40\%. After the

Figure 1. N1s excitation spectra of CuPc 2 monolayers a) and CuPc 20 nm b) as a function of θ the angle of incidence; The lower energy features (398-403 eV) represent the π^{*} resonances, whereas those features above 403 eV are related to the σ^{*} resonances. passivation process the samples were transferred into UHV. All measurements were performed on freshly evaporated organic layers. Their thickness was monitored by a quartz microbalance. The experiments were performed on the MUSTANG spectroscopy chamber at the Russian-German beamline at BESSY II. The NEXAFS spectra were acquired with a PHOIBOS 150 (SPECS) analyzer. The N1s NEXAFS raw data were divided by the spectra of the $\mathrm{H}-\mathrm{Si}(111)$, background was subtracted and normalized to the absorption step at 425 eV photon energy. A series of NEXAFS measurements were performed as a function of thickness and angle of incidence of the synchrotron radiation.

Figure 1 displays the CuPc N1s excitation spectra for 2 monolayers a) and 20 nm thickness b) as a function of the angle of incidence θ (normal incidence $\theta=90^{\circ}$) of the synchrotron radiation. The intensity of the π^{*} (relative to the σ^{*} one) resonances has a maximum at $\theta=135^{\circ}$ Fig. 1 a) and $\theta=85^{\circ}$ Fig. 1 b). However, the intensity and features of σ^{*} resonance are still visible at the given incidence
angles. This suggests the presence of short range ordering in both cases. This behaviour is similar to $\mathrm{F}_{4} \mathrm{CuPc}$ but opposite of $\mathrm{F}_{16} \mathrm{CuPc}$ which is rather well ordered.

The quantitative analysis of the NEXAFS excitation spectra for $\mathrm{CuPc}, \mathrm{F}_{4} \mathrm{CuPc}$ and $\mathrm{F}_{16} \mathrm{CuPc}$ is provided in figure 2. Figure 2 exhibits the normalized resonance intensity of the π^{*} orbitals as a function of the incidence angle of the synchrotron radiation for the three phthalocyanines. The normalized resonance intensity of the π^{*} orbitals is fitted [2] and the average tilt-angle for each case is calculated. The 3-fold symmetry of the silicon substrate is lifted by the surface roughness and as a consequence the model used for the fit contains an azimuthal dependence as well.
1.

2.

CuPc
3.

4.

$\mathrm{F}_{4} \mathrm{CuPc}$
5.

6.

$\mathrm{F}_{16} \mathrm{CuPc}$

2 monolayers

Figure 2. Normalized resonance intensity of the π^{*} orbitals as a function of the incidence angle θ of the synchrotron radiation - experimental data and fit.

Table 1 summarises the results in terms of tilt angles α and azimuthal angles Φ obtained from the fits as well as the average orientation of the molecules. While CuPc and $\mathrm{F}_{4} \mathrm{CuPc}$ behave in a similar way

Table 1. Determined molecular orientation

	CuPc	$\mathrm{F}_{4} \mathrm{CuPc}$	$\mathrm{F}_{16} \mathrm{CuPc}$
$\begin{gathered} 2 \\ \mathrm{ML} \end{gathered}$	$\begin{gathered} \alpha=70^{0} \pm 2^{0} \\ \Phi=108^{0} \pm 3^{0} \\ \text { tilted } \end{gathered}$	$\begin{aligned} & \hline \alpha=90^{0} \pm 3^{0} \\ & \Phi=55^{0} \pm 5^{0} \\ & \text { standing } \end{aligned}$	$\begin{gathered} \alpha=26^{0} \pm 2^{0} \\ \boldsymbol{\Phi}=84^{0} \pm 5^{0} \\ \text { almost lying } \end{gathered}$
20 $n m$	$\begin{aligned} & \alpha=90^{0} \pm 1^{0} \\ & \Phi=45^{0} \pm 2^{0} \\ & \text { standing } \end{aligned}$	$\begin{gathered} \alpha=60^{0} \pm 2^{0} \\ \Phi=82^{0} \pm 4^{0} \\ \text { tilted } \end{gathered}$	$\begin{gathered} \alpha=10^{0} \pm 2^{\circ} \\ \Phi=0^{\circ} \pm 0.3^{\circ} \\ \text { lying } \end{gathered}$

References

[1] H. Peisert, T. Schwieger, J. M. Auerhammer, M. Knupfer, M. S. Golden, J. Fink, P. R. Bressler M. Mast, J. Appl. Phys. 90 (2001) 466;
[2] J. Stöhr, NEXAFS Spectroscopy, Surface Science Series, Springer, 1996.
[3] K. K. Okudaira, S. Hasegawa, H. Ishii, K. Seki, Y. Harada, N. Ueno, J. Appl. Phys. 85 (1999) 6453;

