Time-resolved photoluminescence in α-PTCDA single crystals: evidence for recombination via Frenkel excitons, charge transfer states, and excimers

Institut für Physik, Technische Universität Chemnitz, 09107, Chemnitz, Germany
Abteilung Biophysik, Universität Ulm, 89069, Ulm, Germany
Department of Physics, University of Cincinnati, Cincinnati, OH 45221, USA

Received 8 July 2003; Revised 1 March 2004; accepted 1 March 2004. Available online 8 April 2004.

Abstract

The radiative recombination channels in α-PTCDA are analysed with time-resolved PL techniques in the 50 ns range between temperatures of $T=10$ and $T=300$ K. The resulting PL spectra are interpreted with calculations based on the transfer of Frenkel excitons and with time-dependent density functional theory applied to different deformed geometries of molecular dimers as microscopic models for self-trapped excitons. At low temperature, the lineshape and radiative lifetime of the most important PL channel can be assigned quantitatively to a vertical transition from the indirect minimum of the Frenkel exciton dispersion towards the electronic ground state. In an intermediate regime below about $T=100$ K, charge transfer states involving an anionic and a cationic molecule dominate the PL spectra. Radiative recombination from an excimer state in a stack geometry has a rather weak temperature dependence, and due to non-radiative quenching of the other PL channels, this excimer PL band predominates above about $T=200$ K.