Stark effect in type-II Ge/Si quantum dots

A. I. Yakimov, A. V. Dvurechenskii, A. I. Nikiforov, V. V. Ulyanov, A. G. Milekhin, and A. O. Govorov

Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia

S. Schulze and D. R. T. Zahn

Institut für Physik, Technische Universität Chemnitz, D-09107, Chemnitz, Germany

(Received 12 September 2002; revised 26 November 2002; published 31 March 2003)

Photocurrent spectroscopy was employed to study interband optical transitions and the quantum-confined Stark effect in an array of Ge/Si self-assembled quantum dots. The mean diameter and height of the Ge nanoclusters are about 6 nm and 4 nm, respectively. Under an applied electric field splitting of the exciton ground state is observed, implying that the dots possess two permanent dipole moments of opposite sign. We argue that the two possible orientations of the electron-hole dipole in each Ge dot are the result of the spatial separation of electrons which can be excited in Si as well as on top and below the Ge nanocluster. The separation of electron and hole is determined to be (5.1±0.2) nm for the top (apex) electron and (0.8±0.3) nm for the bottom (base) electron, yielding a distance between the electrons of (5.9±0.5) nm, which is consistent with the staggered band lineup inherent to type-II quantum dots. An external quantum efficiency of 1% at a telecommunication wavelength 1.3 µm was obtained for a p-i-n structure.

©2003 The American Physical Society

URL: http://link.aps.org/abstract/PRB/v67/e125318
doi: 10.1103/PhysRevB.67.125318

PACS: 78.67.Hc, 71.35.-y, 78.66.Db

Additional Information

Full Text: PDF | GZipped PS

View ISI's Web of Science data for this article: [Source Abstract | Related Articles]