[Journal Home Page] [Search the Journals] [Table of Contents] [PDF version of this article] [Download to Citation Manager]

J. Phys. Chem. B, **105** (48), 12076 -12081, 2001. 10.1021/jp011931f S1089-5647(01)01931-9 **Web Release Date:** November 3, 2001

Copyright © 2001 American Chemical Society

Optical Spectroscopy during Growth of PTCDA- C_{60} Complex Thin Films

Sunggook Park,*† Dmitri A. Tenne,†‡ Georgeta Salvan,† Thorsten U. Kampen,† and Dietrich R. T. Zahn†

Halbleiterphysik, TU Chemnitz, D-09107 Chemnitz, Germany, and Institute of Semiconductor Physics, 630090 Novosibirsk, Russia

Received: May 21, 2001

Abstract:

Combined Raman and photoluminescence (PL) measurements were performed in situ and online during the formation of a PTCDA- C_{60} charge transfer (CT) complex film using organic molecular beam deposition. It is found that two different processes compete during growth, namely the formation of PTCDA- C_{60} CT complexes and the photopolymerization between C_{60} molecules. The CT complexes, formed instantaneously upon the co-deposition of two molecules, decompose as the C_{60} molecules forming the CT complexes undergo the photopolymerization with excess C_{60} molecules. At low coverage, 70% of PTCDA molecules in the film form CT complexes with C_{60} . The rate of CT complex formation decreases dramatically with the beginning of the photopolymerization after 11 min of deposition. The results prove the importance of preventing the formation of C_{60} - C_{60} pairs in order to keep the maximum ratio of CT complexes in the film under laser irradiation.