Fortgeschrittenenpraktikum

Versuch 9: Hall-Effekt

Ort: F-Praktikum, P 008

Dauer: 2 Tage

Dieser transversale galvanomagnetische Effekt wurde 1879 von E. W. Hall entdeckt und nach ihm benannt. Mittels Hall-Effekt-Messungen können Ladungsträger-Konzentrationen und ihre Beweglichkeit getrennt gemessen werden. Das Vorzeichen der Hall-Konstanten informiert darüber, ob vorwiegend positive oder negative Ladungsträger den Leitungsmechanismus bewirken. Der Hall-Effekt hat auch viele technische Anwendungen gefunden, wie z.B. Magnetometer, Gleichstrommesser, Signalgeber u. a.

Mess-/Arbeitsprogramm:

- 1. Führen Sie mit dem angegebenen Versuchsaufbau folgende Messungen für p- <u>und</u> n- Germanium durch:
 - a) Messen Sie die magnetische Flussdichte B in Abhängigkeit vom Spulenstrom I_M ; I_M maximal 5,0 A!
 - b) Messen Sie die Hall-Spannung U_H in Abhängigkeit von B; der Steuerstrom I_{St} beträgt dabei 30 mA. Messen Sie gleichzeitig den Spannungsabfall U_{Pr} über der Hall-Probe.
 - c) Messen Sie U_H in Abhängigkeit von I_{St} (I_{St} maximal 30mA) bei konstantem mittlerem Magnetfeld.
 - d) Messen Sie für <u>p- Germanium</u> U_H in Abhängigkeit von der Temperatur ϑ (ϑ von Raumtemperatur bis 140 °C) bei konstantem mittlerem Magnetfeld und $I_{St}=30$ mA. Messen Sie gleichzeitig den Spannungsabfall U_{Pr} über der Hall-Probe.
- 2. Stellen Sie die Messergebnisse graphisch dar und interpretieren Sie die Kurvenverläufe.
- 3. Berechnen Sie mit den Werten aus Aufgabe 1b oder 1c die Hall-Konstante R_H für p- und n-Germanium.
- 4. Bestimmen Sie mit Hilfe von R_H die Ladungsträgerkonzentration n (bzw. p) und die Ladungsträgerbeweglichkeit μ_H für p- und n- Germanium.
- 5. Bestimmen Sie aus dem Anstieg der Kurve $U_{Pr}^{-l} = f\left(\frac{l}{T}\right)$ die Bandlücke E_g für Germanium.

Gehen Sie dabei von der für Eigenleitung gültigen Beziehung zwischen der Leitfähigkeit Φ und der absoluten Temperatur T aus. Bei konstantem Steuerstrom ist $\sigma \sim U_{Pr}^{-l}$.

- 6. Weisen Sie die beiden unterschiedlichen Leitungsmechanismen in dotierten Halbleitern (Eigenleitung, Störstellenleitung) an Hand Ihrer Messkurven nach.
- 7. Führen Sie analoge <u>Messungen</u> zu 1a), 1b), 1c) <u>für Metalle</u> aus und berechnen Sie R_H , n, μ_H . Überlegen Sie sich dafür ein entsprechendes Messregime, da bei Metallen wesentlich kleinere Hallspannungen zu erwarten sind; I_{St} maximal 20 A!
- 8. Machen Sie an Hand Ihrer Messergebnisse Aussagen zum normalen und anormalen Hall-Effekt.
- 9. Stellen Sie die Gesamtheit der Versuchsergebnisse in übersichtlicher Form zusammen. Vergleichen Sie Ihre Ergebnisse soweit möglich mit Tabellenwerten.

Stichwortverzeichnis:

Leitungsmechanismen in Metallen und Halbleitern, dotierte Halbleiter, galvanomagnetische und thermomagnetische Effekte,

Hall-Effekt: Prinzip, normaler und anormaler Effekt, physikalische Aussagen, technische Anwendungen; Quanten-Hall-Effekt.

Literaturangaben:

Weißmantel, C., HamannC.: Grundlagen der Festkörperphysik, J. A. Barth-Verlag, Leipzig 1995 *

Gerthsen, Ch., Vogel, H.: Physik, Springer Verlag, Berlin 1995 *

Grimsehl: Lehrbuch der Physik, Bd. II, Teubner Verlag, Leipzig 1988 *

Hänsel, H., Neumann, W.: Physik, Bd. Elektrizität, Optik, Raum und Zeit, Spektrum

Akademischer Verlag, Heidelberg 1993 *

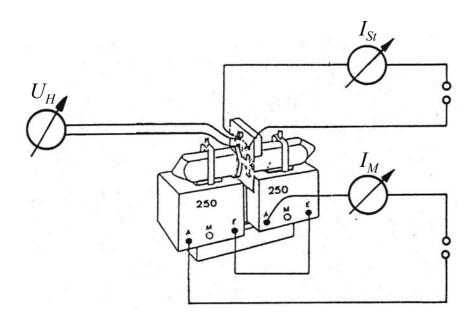
Kuhn, W.: Physik, Bd. II/Tl.2, Westermann Verlag, Braunschweig 1993 *

Schulze, G. E. R.: Metallphysik, Akademie-Verlag, Berlin 1974 *

Metschl, E. C.: Hall-Generatoren – Anwendungen, in: Steuerungstechnik 2. Jg., Nr. 11 *

Siemens AG: Halbleiter *

Ibach, H., Lüth, H.: Festkörperphysik, Springer Verlag Berlin 1988 *


Rötger, A.: Phys. Bl. 51 (1995) Nr. 6 *

Liste der Geräte:

^{*} In der Literaturmappe enthalten.

- 1. Elektromagnet mit 2 Polschuhen, Stromversorgung
- 2. Trägerplatten mit Anschlussbuchsen für Hall-Effekt-Messungen
- 3. Steuerstromversorgung für Halbleiter und Metalle
- 4. Stromversorgung zum Aufheizen des Ge-Kristalls
- 5. Teslameter mit Hall-Sonde
- 6. Mikrovoltmeter für Hallspannung und Thermospannung, div. Handmultimeter, Thermometer

Versuchsaufbau:

Wichtige Hinweise:

- Am Versuchsplatz befinden sich weiterführende Hinweise zur Versuchsdurchführung, die vor Versuchsbeginn unbedingt zu lesen sind.
- Die Schaltung ist vom Betreuer des Versuchs überprüfen zu lassen.