
Energy Landscapes for Soft Matter

Objective: to use stationary points (minima and transition states) of the PES

as a conceptual/computational framework (J. Phys. Chem. B, 110, 20765, 2006):

• Basin-hopping for global optimisation (J. Phys. Chem. A, 101, 5111 1997)

• Superposition approach for thermodynamics (J. Chem. Phys., 124, 044102, 2006)

• Discrete path sampling for global kinetics (Mol. Phys., 100, 3285, 2002)

For m weakly coupled subsystems of N/m = n atoms each the number of

local minima satisfies fmin(mn) = fmin(n)m, so that fmin(N) = eαN . For

transition states we expect fts(mn) = mfmin(n)m−1fts(n) so that

fts(N) = NeαN = Nfmin(N). Two important consequences:

• Appropriate sampling schemes are required for larger systems,

• Low-dimensional projections of the landscape can only represent the con-

nectivity faithfully for a few anharmonic degrees of freedom.



Disconnectivity Graphs of ‘Funnelled’ Landscapes

The nonrandom searches that result in magic number clusters, crystallisation,

self-assembly, and protein folding are associated with a ‘palm tree’ organisa-

tion of the potential energy landscape (Phil. Trans. Roy. Soc. A, 363, 357, 2005).

This ‘funnelling’ pattern has been verified for various structure-seeking sys-

tems, including the LJ13 cluster, icosahedral shells composed of pentago-

nal and hexagonal pyramids, crystalline (Stillinger-Weber) silicon, and the

polyalanine ala16. Large systems can exhibit relatively simple phenomenology.



Frustrated or Funnelled? A Model Protein
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For B9N3(LB)4N3B9N3(LB)5L low-lying minima are separated by high bar-

riers, where the beads are B=hydrophobic, L=hydrophilic, and N=neutral.

This ‘frustration’ affects the observed heat capacity and results in distinct

relaxation time scales, which are eliminated in the corresponding Gō model.



Glassy Landscapes (J. Chem. Phys., 129, 164507, 2008)
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Disconnectivity graphs for BLJ60 including only transition states for noncage-

breaking (top) and cage-breaking (bottom) paths. Changes in colour indicate

disjoint sets of minima. Cage-breaking transitions, defined by two nearest-

neighbour changes, define a higher order metabasin structure.



Basin-Hopping Global Optimisation (J. Phys. Chem. A, 101, 5111, 1997)
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The Thomson Problem (Phys. Rev. B, 74, 212101, 2006; 79, 224115, 2009)

N = 126 N = 141

N = 172 N = 582 N = 942 N = 1632 N = 4352

Long-ranged potential: V =
∑

i<j 1/|ri − rj| with |ri| = 1. Twelve five-

coordinate particles (disclinations) enable a spherical system to obey Euler’s

rule for the disclination charge.

Pentagon patches, extended dislocations (scars), twinned defects, rosettes,

and embryonic grain boundaries occur in larger systems.

Structures provide models for spherically constrained systems: multielectron

bubbles in superfluid helium, cell surface layers, ‘colloidosomes’, colloidal silica

microspheres, superconducting films, lipid rafts deposited on vesicles.



Angle-Axis Coordinates for Rigid Bodies (PCCP, 11, 1970, 2009)

Rodrigues’ formula for the rotation matrix R corresponding to a rotation of

magnitude θ = (p2

1
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2
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)1/2 around the axis defined by p is

R = I + (1 − cos θ)p̃p̃ + sin θ p̃,

where I is the identity matrix, and p̃ is the skew-symmetric matrix
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The product of p̃ and any vector v returns the cross product: p̃v = p̂ × v.

All terms involving rigid-body angle-axis coordinates can be obtained by the

action of the rotation matrix and its derivatives, whose forms are programmed

in system-independent subroutines.

The angle-axis representation is free of singularities and constraints.
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Denote positions in the body-fixed frame by superscript 0. For rigid bodies I and J with sites i and j defining site-site isotropic potentials UIJ
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Self-Assembly of Icosahedral Shells (PCCP, 11, 2098-2104, 2009)
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Palm tree disconnectivity graphs with Ih global minima are found for

T = 1 and T = 3 shells constructed from pentagonal and hexagonal pyramids.

Landscapes of this form are associated with good structure-seekers.



24 Pentagonal Pyramids

 

 

For the same parameters two T = 1 icosahedra are similar in energy to a

single shell based on a snub cube. Polyoma virus capsid protein VP1 forms a

left-handed snub cube from alkaline solution in the absence of the genome.
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A Molecular Machine

Coupled linear and rotary motion has been characterised for a helix composed

of 13 asymmetric dipolar dumbbells in the presence of an electric field.

The helix changes handedness as the boundary between segments propagates

along the strand via successive steps that switch the dumbbells.



Clusters of Ellipsoids (Phys. Rev. Lett., 99, 086106, 2007)
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Clusters of discoids bound by the Paramonov-Yaliraki potential exhibit helical

global minima when the dimer has a shifted stacked configuration.

The corresponding energy landscapes generally have single funnel topologies

for both single and multiple strand helices.



Emergent Behaviour from Simple Building Blocks
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Adding two repulsive axial Lennard-Jones sites to the ellipsoidal core produces

remarkably versatile building blocks. Oblate ellipsoids favour shells, while

stronger repulsion for the longer semiaxis produces tubes and spirals.

Global minima for the oblate ellipsoids include icosahedra for N = 12, 32 and

72 (T = 1, 3 and 7), the snub cube observed for polyoma virus capsids at

N = 24, and conical, biaxial, prolate, and oblate shells at other sizes.



Modelling Mesos
opi
 Stru
tures (ACS Nano, 4, 219, 2010)

top

side

Mixing building blocks that favour shells and tubes produces structures with

distinct head and tail regions (left): the Frankenphage.
Particles with a Lennard-Jones site buried in the ellipsoid assemble into a

spiral structure (right) with parameters similar to tobacco mosaic virus.



Colloidal Clusters (ChemPhysChem, 11, in press, 2010)
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The structures of colloidal clusters formed from polystyrene microspheres by

depletion interactions have recently been resolved using optical microscopy.

For these short-ranged interactions the isomer populations are quantitatively

reproduced by the partition functions Zα = e−βVα/oα(βhνα)3N−6 = e−Fα/kBT ,

calculated for a Morse potential with range parameter ρ = 30. The order of

the point group, oα, plays a key role, as shown for 8-particle clusters, above.



A Modified Superposition Approach (Chem. Phys. Lett., 466, 105, 2008)

Here the partition function is broken down into contributions from local min-

ima and pathways as a function of order parameter a, with terms like

Zi(a, T ) =

(
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hνi

)3N−6
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2
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,

where Ai is a weighted sum of order parameter derivatives.

Free energy surfaces for alanine dipeptide (CHARMM22/vacuum) from su-

perposition, replica exchange, and reaction path Hamiltonian superposition:



The ‘filling in’ problem for barrier regions in low-dimensional projections due

to overlapping distributions can be avoided using disconnectivity graphs.

The effect of regrouping for a barrier threshold of 3 kcal/mol is shown below

for AMBER(ff03)/GBOCB (left) and compared with the CHARMM22/vacuum

surface (right). Free energy of group J : FJ(T ) = −kT ln
∑

j∈J Zj(T ) with

F
†
LJ(T ) = −kT ln

∑

l←j

Z
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Discrete Path Sampling (Mol. Phys., 100, 3285, 2002).
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Phenomenological A ↔ B rate constants can be formulated as sums over

discrete paths, defined as sequences of local minima and the transition states

that link them, weighted by equilibrium occupation probabilities, p
eq
b :
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where Pαβ is a branching probability and CA
b is the committor probability that

the system will visit an A minimum before it returns to the B region.



Discrete path sampling is a framework for growing databases of stationary

points that are relevant to global kinetics (Int. Rev. Phys. Chem., 25, 237, 2006).

A hierarchy of expressions can be obtained for the rate constants:
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τb, tb and TAb are the mean waiting times for a transition from b to an adjacent

minimum, to any member of A ∪ B, and to the A set, with τb ≤ tb ≤ TAb.

k
AB

is formally exact within a Markov assumption for transitions between

the states, which can be regrouped. Additional approximations come from

incomplete sampling, and the densities of states and transition state theory

used to describe the local thermodynamics and kinetics.

Calculating k
AB

using diagonalisation, successive overrelaxation (SOR), or

kinetic Monte Carlo (KMC) can become unfeasible for large databases.



Kinetic Analysis by Graph Transformation (JCP, 124, 234110, 2006)

The graph transformation procedure is non-stochastic and non-iterative. Min-

ima, x, are progressively removed, while the branching probabilities and wait-

ing times in adjacent minima, β ∈ Γ, are renormalised:

P ′

γβ = Pγβ + PγxPxβ

∞∑

m=0

Pm
xx = Pγβ +

PγxPxβ

1 − Pxx

, τ ′

β = τβ +
Pxβτx

1 − Pxx

.

Each transformation conserves the MFPT from every reactant state to the

set of product states with an execution time independent of temperature:

kT/K ∆Fbarrier Nmin Nts NGT/s SOR/s KMC/s

298 5.0 272 287 8 13 85,138

298 4.5 2,344 2,462 8 217,830

1007 - 40,000 58,410 35 281 1,020,540

1690 - 40,000 58,410 39 122,242



Finding Stationary Points

Minimisation: Nocedal’s algorithm, LBFGS, with line searches removed.

Transition states: single-ended searches use hybrid eigenvector-following

(Phys. Rev. B, 59, 3969, 1999; Chem. Phys. Lett., 341, 185, 2001), double-ended searches

use the doubly-nudged elastic band approach (J. Chem. Phys., 120, 2082, 2004).

These methods can be combined with electronic structure calculations.

• Hydrocarbon dissociation on Pt{110} (1 × 2) (J. Chem. Phys., 126, 044710,

2007). For ethane, low barriers (0.3 to 0.4 eV) are found for initial formation

of ethene and ethylidene, medium barriers (0.7 to 1.1 eV) are found for

dehydrogenation of C2H4, and higher barriers for further dehydrogenation.

• Ammonia synthesis and dissociation on Fe{211}: the Haber-Bosch process.

We predict that atomic nitrogen can be hydrogenated above around 340 K,

with ammonia being evolved at temperatures above 570-670 K.



Permutational Isomerisation of LJ2D
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Disconnectivity graphs for LJ2D
7

. Left: permutation-inversion isomers of the

four local minima are collected together. Right: one of the atoms is tagged,

lowering the permutational degeneracy.

The fastest ten paths contribute about 74% of the total rate constant at

kT/ǫ = 0.05. Various combinations of diamond-square-diamond rearrange-

ments make significant contributions.



Knotted Proteins (PLoS, in press, 2010)−136
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The tRNA methyltransferase protein 1UAM contains a deep trefoil knot.

The folding pathway has two slipknot-type steps for a truncated (residues

78–135) Gō model representation using an associated memory Hamiltonian.

The estimated rate constant is between 0.04 and 0.4 s−1.



Aggregation of the GNNQQNY Peptide
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GNNQQNY is a polar heptapeptide from

the N-terminal prion-determining region

of the 685 residue yeast prion protein Sup35. Dimer free energy minima are

in-register parallel, IP, off-register parallel, OP, and antiparallel, IA, sheets.

Dimer formation rates are estimated as milliseconds to seconds. Time scale

for interconversion between dimers ranges from hours to days at 298 K.



Folding of Beta3s
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Beta3s is a designed 20-residue peptide with a three-stranded antiparallel

β-sheet. Folding with CHARMM19/EEF1 involves early formation of the

C-terminal hairpin followed by docking of the N-terminal strand.

Mean first passage time is 300 ns at 298 K, consistent with other calculations

and the experimental upper bound of 4000 ns (J. Phys. Chem. B, 112, 8760, 2008).



A Connection Between Dynamics and Thermodynamics

The organisation of a PES is governed by its stationary points, where Taylor

expansions provide local descriptions in terms of Hessian matrices.

The organisation of families of PES’s as a function of parameters in the

potential is determined by the stationary points that possess additional zero

Hessian eigenvalues, known as non-Morse points.

Catastrophe theory provides a local representation of the PES around non-

Morse points as a function of both atomic coordinates and parameters.

The splitting lemma reduces the dimensionality to the essential variables,

while transversality guarantees that the resulting classifications are universal.

The simplest one-parameter catastrophes are the fold, f(x) = 1

3
x3 + ax, and

the symmetrical cusp, f(x) = 1

4
x4 + 1

2
ax2.



Geometries of the fold and cusp catastrophes.
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LJ19 (NaCl)35Cl− bulk glass-formers
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For systems with a fixed potential we effectively have a snap-shot of parameter

space. On average, rf remains close to unity for many pathways in both model

clusters and bulk, providing an explanation for Hammond’s postulate.


