Complex dynamics made simple: colloidal dynamics

Paolo Sibani

Chemnitz, June 2010
Quench: sudden change of external parameter, e.g. temperature or density.
Quench: sudden change of external parameter, e.g. temperature or density.

Aging: After a quench, complex glassy materials (glasses, polymers spin glasses) undergo a slow change of physical properties called aging. 1
- Quench: sudden change of external parameter, e.g. temperature or density.
- Aging: After a quench, complex glassy materials (glasses, polymers spin glasses) undergo a slow change of physical properties called aging\(^1\).
- Age: time elapsed from the initial quench.
- Quench: sudden change of external parameter, e.g. temperature or density.
- Aging: After a quench, complex glassy materials (glasses, polymers spin glasses) undergo a slow change of physical properties called aging\(^1\).
- Age: time elapsed from the initial quench
- Time homogeneous dynamics: e.g. diffusion, no changes of mesoscopic rates with time.
Terminology

- Quench: sudden change of external parameter, e.g. temperature or density.
- Aging: After a quench, complex glassy materials (glasses, polymers spin glasses) undergo a slow change of physical properties called aging\(^1\).
- Age: time elapsed from the initial quench
- Time homogeneous dynamics: e.g. diffusion, no changes of mesoscopic rates with time.
- Time inhomogeneous dynamics: e.g. aging: rate of significant events goes down with age.
Many basins of attraction. E.g. energy minima separated by energy barriers.
- Many basins of attraction. E.g. energy minima separated by energy barriers.
- On long enough time scales neglect the details and look at the dynamics at the level of attractor changes.
Many basins of attraction. E.g. energy minima separated by energy barriers.

On long enough time scales neglect the details and look at the dynamics at the level of attractor changes.

The resulting dynamics may be simple: e.g. diffusion in sinusoidal potential
Many basins of attraction. E.g. energy minima separated by energy barriers.

On long enough time scales neglect the details and look at the dynamics at the level of attractor changes.

The resulting dynamics may be simple: e.g. diffusion in sinusoidal potential

Or complex: e.g. spin glass dynamics, where averages have power-law or logarithmic dependences.
Hard sphere colloidal systems-only short range interactions
• Hard sphere colloidal systems-only short range interactions
• Entropy driven dynamics.
- Hard sphere colloidal systems—only short range interactions
- Entropy driven dynamics.
- Clusters of highly correlated groups of particles (spatial coarse graining)
- Hard sphere colloidal systems—only short range interactions
- Entropy driven dynamics.
- Clusters of highly correlated groups of particles (spatial coarse graining)
- Dynamics described in terms of the probability per unit of time that a cluster survives the random forces from the rest of the system.
What does ‘trivial’ or ‘simple’ mean?

- Trivial dynamics $\overset{\text{def}}{=} \text{time homogeneous (but perhaps not stationary)}$
What does ‘trivial’ or ‘simple’ mean?

- Trivial dynamics $\def\d#1#2{\d{#1}{#2}}$ time homogeneous (but perhaps not stationary)
- For stationary processes:
What does ‘trivial’ or ‘simple’ mean?

- Trivial dynamics $\overset{\text{def}}{=} \text{time homogeneous (but perhaps not stationary)}$
- For stationary processes:
- Correlation and response functions only depend on time differences
Trivial dynamics $\overset{\text{def}}{=} \text{time homogeneous (but perhaps not stationary)}$

For stationary processes:

- Correlation and response functions only depend on time differences
- Can be expanded in eigenvalue expansions
Add random and independent ‘position’ increments
The simplest stochastic process

- Add random and independent ‘position’ increments
- Use linearity of the variance
The simplest stochastic process

- Add random and independent ‘position’ increments
- Use linearity of the variance
- $MSD \propto t$: diffusion
Trivializing aging dynamics

Record dynamics

- record sized fluctuations
Record dynamics

- record sized fluctuations
- in the stationary white noise impinging on the system (e.g. thermal noise)
Trivializing aging dynamics

Record dynamics

- record sized fluctuations
- in the stationary white noise impinging on the system (e.g. thermal noise)
- drive the aging dynamics in marginally stable (glassy) systems
Record dynamics

- record sized fluctuations
- in the stationary white noise impinging on the system (e.g. thermal noise)
- drive the aging dynamics in marginally stable (glassy) systems
- no. of records is a Poisson process in logarithmic time
Record dynamics

- record sized fluctuations
- in the stationary white noise impinging on the system (e.g. thermal noise)
- drive the aging dynamics in marginally stable (glassy) systems
- no. of records is a Poisson process in logarithmic time
- the dynamics appears simple in logarithmic time
Brief overview of results for *thermally activated* dynamics
Brief overview of results for *thermally activated* dynamics
Experimental\(^1\) colloidal data re-analyzed.
Brief overview of results for *thermally activated* dynamics

Experimental\(^1\) colloidal data re-analyzed.

A cluster model for colloidal behavior numerically analyzed.
The rest of this talk

- Brief overview of results for *thermally activated* dynamics
- Experimental\(^1\) colloidal data re-analyzed.
- A cluster model for colloidal behavior numerically analyzed.
- Trees, record dynamics and complexity
Aging set-up

The age t starts at the 'initial quench', and a field is (possibly) switched on at $t = t_w = 100$. In a colloid, the system is centrifuged to a high density (quench). No fields are applied.
The Edwards Anderson spin-glass is an Ising spin model where interacting spins $\sigma_i = \pm 1$ are placed on a lattice. The Hamiltonian is

$$\mathcal{H} = \sum_{n.n.} \sigma_i \sigma_j J_{ij}.$$
The Edwards Anderson spin-glass is an Ising spin model where interacting spins $\sigma_i = \pm 1$ are placed on a lattice. The Hamiltonian is

$$ H = \sum_{n.n.} \sigma_i \sigma_j J_{ij}. $$

- For nearest neighbors J_{ij} are Gaussian standard random variables, independent for $i < j$.
The Edwards Anderson spin-glass is an Ising spin model where interacting spins $\sigma_i = \pm 1$ are placed on a lattice. The Hamiltonian is

$$\mathcal{H} = \sum_{n.n.} \sigma_i \sigma_j J_{ij}.$$

- For nearest neighbors J_{ij} are Gaussian standard random variables, independent for $i < j$
- The thermal equilibrium properties of the model are complex
The Edwards Anderson spin-glass is an Ising spin model where interacting spins $\sigma_i = \pm 1$ are placed on a lattice. The Hamiltonian is

$$\mathcal{H} = \sum_{n.n.} \sigma_i \sigma_j J_{ij}.$$

For nearest neighbors J_{ij} are Gaussian standard random variables, independent for $i < j$.

- The thermal equilibrium properties of the model are complex.
- The time evolution, as given by a MC algorithm (Metropolis acceptance rule or equivalent) is complex and very similar to experimental data.
The p-spin model is an Ising spin model, The Hamiltonian is
\[\mathcal{H} = - \sum_{\text{Plaq.}} \sigma_i \sigma_j \sigma_k \sigma_l \]
The p-spin model is an Ising spin model. The Hamiltonian is

\[\mathcal{H} = - \sum_{\text{Plaq.}} \sigma_i \sigma_j \sigma_k \sigma_l \]

The thermal equilibrium properties of the model are trivial.
The p-spin model is an Ising spin model. The Hamiltonian is

\[\mathcal{H} = - \sum_{\text{Plaq.}} \sigma_i \sigma_j \sigma_k \sigma_l \]

- The thermal equilibrium properties of the model are **trivial**.
- The time evolution is nevertheless complex, featuring metastability and aging.
The Restricted Occupancy Model is a lattice model describing vortex creep in type II superconductors in terms of the number n_i of vortices on site i.

- the energy includes repulsive interactions between vortex lines on neighbor sites

The Restricted Occupancy Model is a lattice model describing vortex creep in type II superconductors in terms of the number n_i of vortices on site i.

- the energy includes repulsive interactions between vortex lines on neighbor sites
- pinning to random sites

The Restricted Occupancy Model is a lattice model describing vortex creep in type II superconductors in terms of the number n_i of vortices on site i.

- the energy includes repulsive interactions between vortex lines on neighbor sites
- pinning to random sites
- the configuration is updated with Metropolis dynamics

The time variation of the total number of vortices $N(t)$ on the system for a single realization of the pinning potential and the thermal noise in a $8 \times 8 \times 8$ lattice for $T = 0.1$.

Heat transfer PDF for a spin glass model (PS & H J Jensen, Europhysics Lett. 2005)

Heat transfer H over small time δt in the E-A spin glass model has a Gaussian part and an intermittent tail. Six different ages are considered with $\delta t/t_w = .01$.
The average rate of energy flow is plotted versus the age for the temperatures shown. The full line has the form $y = C(T)t_w^{-1}$.
Complex dynamics made simple: colloidal dynamics

p-spin model, quakes in real space

\[t_w = 10^5; \quad t_{\text{obs}} = 10^6; \quad T=1.5 \]

S. Christiansen
& PS, *New J. of Physics*
The PDF of the heat exchanged between system and thermal bath over a time $\delta t = 100$. $T = 1.5$.

$t_w = 1000; t_{obs} = 10000; \delta t = 100$.
p-spin model, magnetic fluctuations $H = 0$

The PDF of the spontaneous magnetic fluctuations over a time $\delta t = 100$ and $T = 1.5$.
p-spin model, magnetic fluctuations $H = 0.3$

The magnetic response is SUBORDINATED to the quakes.

PDF of the spontaneous magnetic fluctuations over a time $\delta t = 100$. $T = 1.5$.

PDF

$t_w = 1000; t_{\text{obs}} = 10000; \delta t = 100$

$\delta E > -5$
The evolution of aggregate variables (i.e. the energy and magnetization) is controlled by extremely rare and irreversible events quakes.
The evolution of aggregate variables (i.e. the energy and magnetization) is controlled by extremely rare and irreversible events quakes.

Reversible fluctuation of zero average with Gaussian PDF’s describe the dynamics in quasi-equilibrium.
Experimental data

- Tracking data obtained by confocal microscopy

Experimental data

- Tracking data obtained by confocal microscopy
- Particle radius 1.18μ

Experimental data

- Tracking data obtained by confocal microscopy
- Particle radius 1.18µ
- Trajectories \([x(t), y(t), z(t)]\) available for thousands of tagged particles

Experimental data

- Tracking data obtained by confocal microscopy
- particle radius 1.18μ
- trajectories $[x(t), y(t), z(t)]$ available for thousands of tagged particles
- dense colloids $\rho > 0.62$ sub-diffusive behavior, aging

Experimental data

- Tracking data obtained by confocal microscopy
- Particle radius 1.18μ
- Trajectories $[x(t), y(t), z(t)]$ available for thousands of tagged particles
- Dense colloids $\rho > 0.62$ sub-diffusive behavior, aging
- ‘Glass formers’ $\rho < 0.62$ diffusive behavior, time homogeneous

Experimental procedure

- Centrifuge the sample to desired density
Experimental procedure

- Centrifuge the sample to desired density
- Stir the sample
Experimental procedure

- Centrifuge the sample to desired density
- Stir the sample
- Wait (age t_w calculated from the end of the stirring phase)
Centrifuge the sample to desired density

Stir the sample

Wait (age t_w calculated from the end of the stirring phase)

Start tracking. Scanning through sample ≈ 20 s
MSD vs time. Glass-former

Paolo Sibani
Complex dynamics made simple: colloidal dynamics
MSD vs time. Dense

MSD (μ^2) vs t/t_w

Complex dynamics made simple: colloidal dynamics

Paolo Sibani
Partition the system volume in a set of subvolumes
Persistence analysis

- Partition the system volume in a set of subvolumes
- Pick for each sub-volume a pair of colloidal particle which are initially ‘in touch’
Persistence analysis

- Partition the system volume in a set of subvolumes
- Pick for each sub-volume a pair of colloidal particle which are initially ‘in touch’
- Identify the time at which each pair splits
Persistence analysis

- Partition the system volume in a set of subvolumes
- Pick for each sub-volume a pair of colloidal particle which are initially ‘in touch’
- Identify the time at which each pair splits
- Calculate the fraction of pairs which survive at time t.

Paolo Sibani
Complex dynamics made simple: colloidal dynamics
Persistence curves

Pair Survival probability

$t (s)$

10^{-1}

10^{0}

10^{1}

10^{2}

10^{3}

10^{4}

t/t_w

Thr.=0.4

Thr.=0.6

Thr.=0.8

Paolo Sibani

Complex dynamics made simple: colloidal dynamics
Intermittency curves

‘Glass former’

\[\Delta t = 18 \]
\[\Delta t = 180 \]
\[\Delta t = 360 \]

PDF

\[|\Delta r| \quad (\mu) \]

\[\text{MSD} \quad (\mu^2) \]

0 0.5 1 1.5

0 10^{-4} 10^{-2} 10^0 10^2

0 0.05 0.1

0 500 1000

Paolo Sibani

Complex dynamics made simple: colloidal dynamics
Intermittency curves

Dense colloid

PDF

MSD (µ²)

∆t = 20
∆t = 60
∆t = 100

|∆r| (µ)

Δt (s)

Paolo Sibani
Complex dynamics made simple: colloidal dynamics
the MSD is linear in t (glass formers) and in $\ln(t) - \ln(t_w)$ (dense)
Conclusion from colloid data analysis

- the MSD is linear in t (glass formers) and in $\ln(t) - \ln(t_w)$ (dense)
- The persistence probability is exponential in t (glass formers) and $\ln(t) - \ln(t_w)$ (dense)
Conclusion from colloid data analysis

- the MSD is linear in t (glass formers) and in $\ln(t) - \ln(t_w)$ (dense)
- The persistence probability is exponential in t (glass formers) and $\ln(t) - \ln(t_w)$ (dense)
- Transformation $t \rightarrow \ln(t/t_w)$ trivializes the dynamics of dense colloids
Conclusion from colloid data analysis

- the MSD is linear in t (glass formers) and in $\ln(t) - \ln(t_w)$ (dense)
- The persistence probability is exponential in t (glass formers) and $\ln(t) - \ln(t_w)$ (dense)
- Transformation $t \rightarrow \ln(t/t_w)$ trivializes the dynamics of dense colloids
- Highly intermittent and correlated motion
Not much changes in a colloid

- Particle density is constant
Not much changes in a colloid

- Particle density is constant
- Energy density is constant
Not much changes in a colloid

- Particle density is constant
- Energy density is constant
- Particle displacement over observation time of the order of particle radius
Not much changes in a colloid

- Particle density is constant
- Energy density is constant
- Particle displacement over observation time of the order of particle radius
- Particle motion is jerky and spatially correlated
A cluster model

particles in a cluster moves in fully correlated fashion on average zero CM displacement as long as the cluster persists
when a cluster is destroyed
 Particle motion

- when a cluster is destroyed
- the particles join neighboring clusters
• when a cluster is destroyed
• the particles join neighboring clusters
• and move in real space
when a cluster is destroyed
the particles join neighboring clusters
and move in real space
Probability (per MC query) that a cluster of size \(h \) is destroyed
when a cluster is destroyed
the particles join neighboring clusters
and move in real space
Probability (per MC query) that a cluster of size h is destroyed
$P_k(h) = \frac{1}{\sum_{j=0}^{k} h^j / j!}$; $P_\infty(h) = e^{-h}$; $P_1(h) = 1/(1+h)$
Particle motion

- when a cluster is destroyed
- the particles join neighboring clusters
- and move in real space
- Probability (per MC query) that a cluster of size \(h \) is destroyed
 \[P_k(h) = \frac{1}{\sum_{j=0}^{k} h^j / j!}; \quad P_\infty(h) = e^{-h}; \quad P_1(h) = 1/(1 + h) \]
- for all \(k \): \(P_k(h \to 0) \) for \(h \to \infty \)
The algorithm

- Markov chain, L clusters
The algorithm

- Markov chain, L clusters
- pick a cluster at random
The algorithm

- Markov chain, L clusters
- pick a cluster at random
- destroy it with probability $P_k(h)$
The algorithm

- Markov chain, L clusters
- pick a cluster at random
- destroy it with probability $P_k(h)$
- or choose to another cluster
The algorithm

- Markov chain, L clusters
- pick a cluster at random
- destroy it with probability $P_k(h)$
- or choose to another cluster
- iff cluster is destroyed:
 - partition its particles randomly in two groups
 - each sub-group joins neighboring cluster
 - particles move one random unit step on the lattice
$P_1(h) = \frac{1}{1 + h}$, ‘glass former’, diffusive

\[
\langle \chi^2 \rangle \sim \frac{1}{h}
\]

\[
L = 512, 256, 128, 64, 32, 16
\]

\[
\sim t
\]

Sweeps
Diffusive behavior II

\[P_\infty(h) = e^{-h} \]

dense colloid, log diffusive

\[\langle x^2 \rangle \]

Sweeps

\[\text{L=512} \]
\[\text{L=256} \]
\[\text{L=128} \]
\[\text{L=64} \]
\[\text{L=32} \]
\[\text{L=16} \]

\[P(h) \sim e^{-h} \]

Paolo Sibani
Complex dynamics made simple: colloidal dynamics
$P_1(h) = \frac{1}{1+h}$
‘glass former’, exponential decay

P(h)~1/h
Persistence II

\[P_\infty(h) = e^{-h} \]

dense colloid, exponential decay in \(\log t \)

Int. Persistence

\[P_\infty(h) \sim e^{-h} \]

Sweep time \(t \)
\[P_1(h) = \frac{1}{1+h} \]

‘glass former’, approaches stationary state

Deviation σ vs. sweeps for different system sizes L. The plot shows the deviation σ as a function of the number of sweeps for various system sizes, with each line representing a different L value. The sizes considered are $L = 512, 256, 128, 64, 32, 16$. The data suggests a trend where larger system sizes approach a stationary state more quickly than smaller ones.
$P_\infty(h) = e^{-h}$

dense colloid, equilibrium is out of reach

![Graph showing the deviation σ as a function of sweeps for different system sizes L. The graph illustrates the trend of σ increasing with increasing number of sweeps, with distinct markers for $L=512$, $L=256$, $L=128$, $L=64$, $L=32$, and $L=16$.](image-url)
Collapses of clusters of different sizes are widely separated in time.

All clusters of size $\sigma(t)$ only provide background of mobile particles.

A quake on a time scale t corresponds to the collapse of the smallest cluster $>\sigma$.
Quakes in thermally activated aging

- Energy fluctuations which are negative
Energy fluctuations which are negative
And not reversible on the time scale \(t \) at which they occur
Energy fluctuations which are negative
And not reversible on the time scale t at which they occur
Size $-\delta e/T \gg \log t$
In the aging regime, each cluster collapse is called a ‘quake’

$$P(h) \sim e^{-h}$$

Graph:
- **Y-axis:** Rate of Quakes/L
- **X-axis:** Sweeps
- **Legend:**
 - L=512
 - L=256
 - L=128
 - L=64
 - L=32
 - L=16
 - ~1/t
Temporal statistics of ‘quakes’ II

\[\tau_k = \log(t_k) - \log(t_{k-1}) : \text{waiting log-times} \]

\[P(h) \sim e^{-h} \]

\[
\begin{array}{c|c|c|c}
L & P(\tau) & h \\
32 & \bullet & -1.1 \\
128 & \bullet & -1.2 \\
512 & + & -1.3 \\
\end{array}
\]
The distribution of the logarithmic differences \(\log(t_k) - \log(t_{k-1}) \) is approximately exponential.
The ‘log’ Poisson distribution

- \(P(n, t_1, t_2) \) probability that \(n \) quakes occur in \([t_1, t_2]\).
The ‘log’ Poisson distribution

- $P(n, t_1, t_2)$ probability that n quakes occur in $[t_1, t_2)$.

$$P(n, t_1, t_2) = \frac{\mu^n}{n!} \exp(-\mu) \quad \mu(t_1, t_2) = \alpha \log(\frac{t_2}{t_1}) \quad (1)$$
The ‘log’ Poisson distribution

- $P(n, t_1, t_2)$ probability that n quakes occur in $[t_1, t_2)$.

\[
P(n, t_1, t_2) = \frac{\mu^n}{n!} \exp(-\mu) \quad \mu(t_1, t_2) = \alpha \log(t_2/t_1)
\]

- The statistics applies to e.g. spin-glasses, colloids, evolutionary dynamics etc.
The ‘log’ Poisson distribution

- \(P(n, t_1, t_2) \) probability that \(n \) quakes occur in \([t_1, t_2]\).

\[
P(n, t_1, t_2) = \frac{\mu^n}{n!} \exp(-\mu) \quad \mu(t_1, t_2) = \alpha \log(t_2/t_1) \tag{1}
\]

- The statistics applies to e.g. spin-glasses, colloids, evolutionary dynamics etc.
- Where can it possibly come from?
• In colloids: The dynamics decelerates once a smallest cluster marginally larger than its predecessor is formed
• This cluster is toppled by a record sized fluctuation on a time scale $t_2 > t_1$...
• Sequence of magnitude records in the probability of toppling the smallest cluster marks the evolution of the dynamics.
Relation to hierarchies and trees?

- Two different ways to describe the same generic situation

(Fischer Hoffmann & Sibani, PRE 2008)
Two different ways to describe the same generic situation
Record dynamics needs an underlining hierarchical structure

(Fischer Hoffmann & Sibani, PRE 2008)
Two different ways to describe the same generic situation
Record dynamics needs an underlining hierarchical structure
work with Andreas Fischer and KH elaborates on this point

(Fischer Hoffmann & Sibani, PRE 2008)
Colloid analysis in collaboration with Stefan Boettcher, Emory University, GA, USA. Thanks to Eric Weeks Emory University, for kindly providing the colloidal data.
Colloid analysis in collaboration with Stefan Boettcher, Emory University, GA, USA. Thanks to Eric Weeks Emory University, for kindly providing the colloidal data.

The p-model data shown are part of a (former) student, Simon Christiansen’s master thesis.
Colloid analysis in collaboration with Stefan Boettcher, Emory University, GA, USA. Thanks to Eric Weeks Emory University, for kindly providing the colloidal data.

The p-model data shown are part of a (former) student, Simon Christiansen’s master thesis.

Thanks to Jesper Dall, Christian Schön Karl Heinz Hoffmann & Henrik J. Jensen for inputs and discussions over the years.