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Pathways to equilibrium orientation fluctuations in finite stripe-forming systems
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Small-angle orientation fluctuations in ordered stripe-forming systems free of topological defects can exhibit
aging and anisotropic growth of two length scales. In infinitely extended systems, the stripe orientation field
develops a dominant modulation length λ∗

‖(t) in the direction parallel to the stripes, which increases with time t as
λ∗

‖(t) ∼ t1/4. Simultaneously, the orientation correlation length ξ⊥(t) in the direction perpendicular to the stripes
increases as ξ⊥(t) ∼ t1/2 [Riesch et al., Interface Focus 7, 20160146 (2017)]. Here we show that finite systems of
size L⊥ × L‖ with periodic boundary conditions reach equilibrium when the dominant modulation length λ∗

‖(t)
reaches the system size L‖ in the stripe direction. The equilibration time τ ‖

eq is solely determined by L‖, with
τ ‖

eq ∼ L4
‖. In systems with L⊥ < L2

‖/2πλp, where λp is the undulation penetration length, the initial aging and
coarsening dynamics changes at the crossover time τ⊥

C ∼ L2
⊥ to an aging and coarsening dynamics described

by the one-dimensional Mullins-Herring equation, before reaching equilibrium at τ
eq
‖ . Our work reveals the two

pathways to equilibrium in stripe phases with periodic boundary conditions, the finite-size scaling behavior of
equilibrium orientation fluctuations, and the characteristic exponents associated with the influence of a finite
system size.

DOI: 10.1103/PhysRevE.96.052224

I. INTRODUCTION

Stripe patterns occur in many physical systems, such as
thin magnetic films [1–4], Rayleigh-Bénard convection [5,6],
and thin films of cylinder-forming block copolymers [7]. A
periodic, two-dimensional (2D) stripe pattern is a conceptually
simple prototype of more complex modulated phases [8],
such as the three-dimensional periodic patterns of lamellae,
cylinders, and spheres, as well as the gyroid phase found
in block copolymers [9] and surfactant phases [10,11]. In
particular, lamellar phases are found in a multitude of physical
systems, for instance, smectic liquid crystals [12], lipid
membranes [13], and electronic phases in superconductors
[14,15].

Orientation fluctuations, due to either thermal noise or a
stochastically fluctuating external parameter, are an intrinsic
property of any modulated phase. With computer simulations
based on a minimal phase-field model (model B with Coulomb
interactions), we discovered the aging and coarsening of
small-angle orientation fluctuations in ordered stripe-forming
systems free of topological defects [16]. The aging and
coarsening dynamics is explained [17] by an analytic theory
based on the linear elastic model for stripe displacements
first introduced by Peierls [18] and Landau [19]: Under the
influence of noise, stripes that are initially perfectly ordered
develop small-angle orientation fluctuations, and the stripe
orientation field is characterized by a dominant modulation
length λ∗

‖(t) in the direction parallel to the stripes, which

increases with time t as λ∗
‖(t) ∼ t

1
4 . Simultaneously, the

time-dependent orientation correlation length perpendicular
to the stripes ξ⊥(t) increases as ξ⊥(t) ∼ t

1
2 .

The orientation fluctuations in stripe phases are to some
extent similar to the director fluctuations of layers in smectic
liquid crystals, which have been extensively studied both
theoretically and experimentally [12,20]. Smectic liquid crys-
tals display the Landau-Peierls instability [18,19,21], which
manifests itself as a logarithmic divergence of mean-square
displacement fluctuations in three dimensions. The thermally

excited equilibrium fluctuations can lead to the so-called
undulation instability if a magnetic field (Helfrich-Hurault
effect [22,23]) or mechanical tension [24,25] is applied. For
an overview of the different types of undulation phenomena
in liquid crystals, we refer to de Gennes’ book [12]. In stripe
phases, mean-square displacement fluctuations diverge with
a power law; however, the mean-square of the orientation
fluctuations remains finite, as Toner and Nelson have shown
[26]. Nevertheless, infinite stripe phases display aging and
coarsening (divergence) of length scales characterizing the
orientation field as described above [16,17].

Here we study the influence of periodic boundary condi-
tions on the aging and coarsening dynamics of orientation fluc-
tuations in stripe phases. We consider the inherent anisotropy
of the stripe pattern and study finite systems of size L⊥ × L‖
with periodic boundary conditions where L⊥ and L‖ are the
system’s extensions in the directions perpendicular and parallel
to the stripes, respectively. Utilizing numerical simulations
based on a phase-field model and with an analytic theory
based on the Landau-Peierls model, we find that these finite
systems reach equilibrium when the dominant modulation
length λ∗

‖(t) in the direction parallel to the stripes reaches the
system size L‖. As a consequence, the growth of the orientation
correlation length ξ⊥(t) in the direction perpendicular to the
stripes stops at the equilibrium correlation length ξ

eq
⊥ < L⊥, if

L⊥ is large enough. Our analytical calculations based on the
Landau-Peierls model reveal the two pathways to equilibrium
as well as the scaling forms and characteristic exponents
associated with the influence of a finite system size.

Finite-size scaling first emerged as a concept in the
study of equilibrium phase transitions in finite systems [27].
Later, it became an important tool for interpreting computer
simulations where accessible system sizes are still much
smaller than macroscopic samples [28,29]. Scaling concepts
in different forms have also proven essential for understanding
systems out of equilibrium. Domain growth in phase-ordering
systems after a quench [30,31] is one example where finite-size
scaling has been studied extensively [32–38]. Recently, the
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FIG. 1. (a) Snapshot of an ordered stripe-forming system display-
ing orientation fluctuations. The concentration field ψ(r,t = 5 × 105)
is shown for a noise strength η/ηc = 1

3 . The image shows a portion
of the 55λ0 × 55λ0 large simulation area. (b) Illustration of the stripe
displacement u and the stripe orientation θ . The thick black lines
represent the center lines of individual stripes, while the dashed line
indicates u = 0. λ0 indicates the wavelength of the stripe pattern.
Adapted from Ref. [17].

system size’s influence on the aging behavior of such a system
has also been investigated [39]. In the context of stripe-forming
systems, the dependence of the orientational susceptibility
on the system size has been used to test theoretical results
concerning the nature of phase transitions in systems with
different interactions [40]. Finite-size scaling is also inherent
in a different class of nonequilibrium systems, namely,
roughening surfaces and interfaces [41]. In this scenario, the
roughness of a surface scales as a power of the system size,
as expressed by the Family-Vicsek scaling [42]. In the present
work, we will exploit the analogy of the stripe-forming system
with the one-dimensional (1D) Mullins-Herring equation as
already demonstrated in Ref. [17].

Let us begin by introducing the phenomenology of an
ordered stripe-forming system under the influence of noise,
where the noise strength η is well below the critical noise
strength ηc = 0.020(3), which marks an order-disorder transi-
tion [16]. Figure 1(a) shows a snapshot of the concentration
field ψ(r,t) for the time t = 5 × 105. Starting from an
initially unperturbed stripe pattern at t = 0 that minimizes
the system’s free energy, the system evolved according to
a Langevin equation (model B with Coulomb interactions)
and developed small-angle orientation fluctuations but no
topological defects [16]. In a further reduced elastic model,
only the coarse-grained displacements of the stripes’ center
positions are considered. The sketch in Fig. 1(b) introduces
the stripe displacement u(r,t) and the stripe orientation θ (r,t),
as well as the coordinates r⊥ (perpendicular to the stripes) and
r‖ (parallel to the stripes). The corresponding extensions of
the system are designated L⊥ and L‖, respectively. Due to the
anisotropic nature of an ordered stripe pattern, finite systems
with different geometries arise. The simplest approach is to
consider a square system with L⊥ = L‖. Otherwise, only one
side can be made small while keeping the other one large.
This results in a rectangular geometry, which either contains
numerous short stripes (L⊥ � L‖), or only a few but long
stripes (L⊥ � L‖).

We investigate these different configurations using both
numerical simulations and analytical theory. To this end, we
closely follow our previous work [16,17], where we studied
infinitely extended systems. In the present work, we derive
the corresponding expressions that take the system’s periodic
boundary conditions into account. In Sec. II we introduce the
phase-field model for the stripe dynamics, the spatio-temporal
correlation functions of the local stripe orientation θ (r,t), and
the corresponding structure factor. In Sec. III we introduce the
Landau-Peierls model for stripe displacement and derive the
expressions for the structure factor, the two-time correlation
function, and the spatial correlation function of the local stripe
orientation. In Sec. IV the numerical results are shown and
compared with the analytical expressions derived from the
Landau-Peierls model. First, we discuss the case of short
stripes, where L⊥ � L‖, as this is the most pronounced
situation leading to equilibrium. Then we discuss the opposite
case of long stripes, namely, L⊥ � L‖, where the system
displays a quasi-1D behavior. Finally, we discuss the pathway
to equilibrium for finite square systems with L⊥ = L‖ and
summarize our results in Sec. V.

II. PHASE-FIELD MODEL FOR STRIPE DYNAMICS

A. Free energy and stochastic equation

We performed numerical simulations of a minimal model
for stripe formation and dynamics, known as model B with
Coulomb interactions. The model is based on the dynamic
equation for phase separation with a conserved order parameter
[43]:

∂tψ(r,t) = ∇2 δF[ψ]

δψ(r,t)
+ ζ (r,t), (1)

where ψ(r,t) is a scalar field representing the concentration
difference ψ(r,t) = ψA(r,t) − ψB(r,t) between two compo-
nents A and B. The Gaussian noise term ζ (r,t) satisfies
〈ζ (r,t)〉 = 0 and 〈ζ (r,t)ζ (r′,t ′)〉 = −2η∇2δ(r − r′)δ(t − t ′),
where 〈·〉 stands for the statistical average and η parameterizes
the noise strength. The free-energy functional F[ψ(r,t)]
was first derived by Ohta and Kawasaki [44]. In d spatial
dimensions,

F[ψ] =
∫

{−ψ(r′,t)2 + ψ(r′,t)4 + [∇ψ(r′,t)]2}ddr ′

+ �

2

∫∫
ψ(r′,t)G(r′ − r′′)ψ(r′′,t) ddr ′ ddr ′′, (2)

where the first integral is a short-range Ginzburg-Landau free
energy, and the second integral represents repulsive long-range
Coulomb interactions controlled by the parameter �. The
Green’s function G(r − r′) is defined by −∇2G(r − r′) =
δ(r − r′). Inserting the free energy [Eq. (2)] into the dynamic
equation [Eq. (1)] yields the following stochastic partial
differential equation (PDE):

∂tψ(r,t) = ∇2[−ψ(r,t) + ψ3(r,t) − ∇2ψ(r,t)]

−�ψ(r,t) + ζ (r,t). (3)

Compared to more sophisticated approaches for simulating
block copolymers [45,46], the model given by Eq. (3) has the
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advantage of being computationally less demanding, which
enables us to more easily investigate its long-term behavior.

As detailed in our previous works [16,17], we prepare
the system in a perfectly ordered state consisting of parallel
stripes with wavelength λ0 = 2π�− 1

4 . The amplitude and
wavelength were chosen to minimize the free energy F[ψ]
in a single-mode approximation [47]. We fix the interaction
parameter � as 0.2, for which Eq. (3) exhibits stripe formation
[48]. The noise strength η was chosen so that η/ηc = 1

30 ,
well below the critical noise strength ηc = 0.020(3), at which
an order-disorder transition occurs [16]. Using an efficient
pseudospectral algorithm [49], we performed simulations of
Eq. (3) with periodic boundary conditions in d = 2 dimensions
on lattices with size L⊥ × L‖. Space and time were discretized
in increments of r = λ0/10 and t = 0.1, respectively. The
results presented below were averaged over 40 independent
realizations. The quantities which have been computed in equi-
librium (with subscript or superscript “eq”) were additionally
averaged over times t > 105 (t > 106 for L‖ = 16λ0).

B. Correlation functions

Our main observable is the local stripe orientation θ (r,t),
computed from the concentration field ψ(r,t) by using the
gradient-square tensor [50–52]. Some examples for the ori-
entation fields θ (r,t) of finite-size systems in equilibrium are
presented in Fig. 2(a). A visual inspection of the figure suggests
substantial differences regarding the orientation fluctuations.
These differences become even clearer when considering the
coarse-grained orientation field, where structures smaller than
one wavelength λ0 have been removed using a Gaussian filter
[Fig. 2(b)]. The magnitude of the orientation fluctuations is
largest in the system containing long stripes [Fig. 2(b), top left],
whereas fluctuations with a wavelength > λ0 are much less
pronounced in systems where L‖ is small [Fig. 2(b), bottom
left and right]. The small square system [Fig. 2(b), bottom
left] exhibits a modulation of the orientation field in the stripe
direction, with the dominant wavelength λ∗

‖ = L‖ spanning
the whole extent of the system parallel to the stripes, whereas
almost no variation is seen in the perpendicular direction. The
latter also holds for the system where L⊥ � L‖ [Fig. 2(b),
top left]. In contrast, in the large square system [Fig. 2(b), top
right], there is a certain degree of variation perpendicular to the
stripes. This is also the case for the system where L⊥ � L‖
[Fig. 2(b), bottom right]. However, the spatial extent of the
orientational domains in the direction perpendicular to the
stripes does not reach the system size L⊥.

To investigate the dynamics of the stripe orientation θ (r,t),
we use spatio-temporal correlation functions. The most general
form is given by

Cθ (r,r′,t,tw) ≡ Re
[〈
e2i[θ(r,t)−θ(r′,tw)]

〉
ζ

− 〈
e2iθ(r,t)〉

ζ

〈
e−2iθ(r′,tw)

〉
ζ

]
, (4)

which takes into account the symmetry and periodicity of the
stripe orientation, namely, its invariance under the transforma-
tion θ → θ + π . In the case of spatial translation invariance,
Eq. (4) depends only on the difference R ≡ r − r′ and can thus
be written as Cθ (R,t,tw) ≡ Cθ (r,r + R,t,tw). Furthermore,
in a finite system with periodic boundary conditions, the

FIG. 2. (a) Examples of orientation fields θ (r,t) for stripe-
forming systems with different extensions L⊥ and L‖. The dynamics
was advanced until equilibrium was attained. Top left: L⊥ = 3λ0,
L‖ = 16λ0. Top right: L⊥ = L‖ = 16λ0. Bottom left: L⊥ = L‖ =
3λ0. Bottom right: L⊥ = 16λ0, L‖ = 3λ0. (b) Orientation fields
from the same systems as in (a) where fluctuations smaller than λ0

were removed. The orientation angle in the two bottom panels was
multiplied by a factor of three.

correlation function is also periodic in the system size:
Cθ (R,t,tw) ≡ Cθ [R + (mL⊥,nL‖),t,tw], with integers m,n.
From this quantity, the two-time correlation function Cθ (t,tw)
is obtained by setting R = 0:

Cθ (t,tw) ≡ Cθ (R = 0,t,tw). (5)

Conversely, the equal-time spatial correlation function is given
by

Cθ (R,t) ≡ Cθ (R,t,tw = t). (6)

We also consider a related quantity, the structure factor
of the orientation, Sθ (q,t), which is given by the Fourier
transform of the equal-time spatial orientation correlation
function:

Sθ (q,t) ≡
∫ L⊥

0

∫ L‖

0
Cθ (R,t)e−iq·R d2R. (7)

Here the wave vector q ≡ (q⊥
m,q

‖
n) ≡ 2π (m/L⊥,n/L‖), with

integers m,n satisfying −∞ � m,n � +∞. The structure
factor parallel to the stripes Sθ (q⊥

m = 0,q
‖
n,t) exhibits a
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characteristic maximum at a wave number q∗
‖ (t) ≡

arg max
q

‖
n

Sθ (0,q
‖
n,t), where the peak intensity S∗

θ (t) ≡
Sθ (0,q∗

‖ ,t). Numerically, we first fit smoothing splines to

Sθ (0,q
‖
n,t) before calculating q∗

‖ (t). The corresponding wave-
length λ∗

‖(t) ≡ 2π/q∗
‖ (t) is referred to as the dominant modu-

lation length.
For small angles θ , such as those observed at small

noise strengths η � ηc, the orientation correlation function
[Eq. (4)] simplifies to Cθ (r,r′,t,tw) � 4[〈θ (r,t)θ (r′,tw)〉ζ −
〈θ (r,t)〉ζ 〈θ (r′,tw)〉ζ ]. We will use this approximation in our
analytical calculations presented below.

III. LANDAU-PEIERLS MODEL FOR STRIPE
DISPLACEMENT

A. Free energy and stochastic equation

In this section, we discuss a model for smectic liquid
crystals [12] in d = 3 dimensions and stripe-forming systems
(d = 2) which dates back to works by Peierls [18] and Landau
[19]. Later the theory was developed by de Gennes [53] for
smectic liquid crystals and investigated in two dimensions for
stripe phases as well by Toner and Nelson [26]. Specifically,
the static structure factor and the spatial correlation function
of the displacement field were computed [26,54]. The model
is defined in terms of a displacement field u(r,t), which
indicates the distance between a stripe (a layer in d = 3) and
its unperturbed position [see Fig. 1(a)]. It has been shown that
both smectics and stripe-forming systems can be described by
the free-energy functional [26,55,56]

Fel[u] = 1

2

∫
d2r ′{ν2[∂⊥u(r′,t)]2 + ν4[∂2

‖u(r′,t)]2}, (8)

where u(r,t) represents the displacement field and ν2, ν4 > 0
are elastic constants related to compression and bending
(splay), respectively. The operators ∂⊥ and ∂‖ represent the
partial derivatives with respect to r⊥ and r‖, respectively.
Equation (8) can be derived from the phase-field model
for the stripe-forming system given by Eq. (3) by using
a single-mode approximation for the concentration field
ψ(r,t) = A0 cos(q0r⊥), linearizing the term involving ψ3(r,t),
and neglecting higher-order terms in u(r,t) [56,57]. In our
case, the elastic constants assume the values ν2 = 4

√
� = 4q2

0
and ν4 = 1, implying that the so-called penetration length of
undulation fluctuations [58] λp ≡ √

ν4/ν2 = λ0/4π . We now
consider the stochastic PDE

∂tu(r,t) = −δFel[u]

δu(r,t)
+ ζu(r,t) = ν2∂

2
⊥u(r,t)

− ν4∂
4
‖u(r,t) + ζu(r,t), (9)

where the correlations of the white noise ζu(r,t) are given
by 〈ζu(r,t)ζu(r′,t ′)〉 = 2σ 2δ(r − r′)δ(t − t ′), where σ 2 is the
noise strength. Equation (9) represents a gradient descent
dynamics within the energy Fel combined with the stochastic
noise term ζu(r,t) and thus corresponds to model A in the
classification of Hohenberg and Halperin [43].

In the following, we consider all functions as peri-
odic in space with periods L⊥ and L‖. After introducing
the Fourier transform û(q,t) ≡ ∫ L⊥

0

∫ L‖
0 u(r,t)e−iq·r d2r , with

q = (q⊥
m,q

‖
n), the equation reads

dt û(q,t) = −a(q)û(q,t) + ζ̂u(q,t), (10)

where the damping rate

a(q) ≡ ν2(q⊥
m )2 + ν4(q‖

n)4, (11)

and the Fourier-transformed noise ζ̂u(q,t) has the follow-
ing correlations: 〈ζ̂u(q,t)ζ̂u(q′,t ′)〉 = 2σ 2L⊥L‖δq,−q′δ(t − t ′).
Since we are mainly interested in the dynamics of the
orientation field θ (r,t), we follow Toner and Nelson [26]
and compute θ (r,t) from the displacement field u(r,t) by
taking the derivative in the r‖ direction [see Fig. 1(a)]:
θ (r,t) ≡ − tan−1[∂‖u(r,t)] � −∂‖u(r,t), where the latter ap-
proximation holds for small gradients of the displacement
∂‖u(r,t) � 1. Applying this to Eq. (10) leads to the following
differential equation for the Fourier transform θ̂ (q,t) of the
orientation field θ (q,t):

dt θ̂ (q,t) ≡ dt [iq
‖
nû(q,t)] = −a(q)θ̂ (q,t) + ζ̂θ (q,t), (12)

where the noise ζθ has correlations 〈ζθ (r,t)ζθ (r′,t ′)〉 =
−2σ 2∂2

‖ δ(r − r′)δ(t − t ′) in real space, which corresponds

to 〈ζ̂θ (q,t)ζ̂θ (q′,t ′)〉 = 2σ 2L⊥L‖(q‖
n)2δq,−q′δ(t − t ′) in Fourier

space. Equation (12) is a linear stochastic ordinary differential
equation, similar to those arising in the context of surface
roughening processes [59], which are known to exhibit
coarsening and aging [31].

B. Structure factor Sθ (q,t)

For the initial condition θ̂ (q,t = 0) = 0, the solution of
Eq. (12) can be written as θ̂ (q,t) = ∫ t

0 e−a(q)[t−τ ]ζ̂θ (q,τ ) dτ .
Inserting this expression into the correlation function

Sθ (q,q′,t,tw) ≡ 4〈θ̂ (q,t)θ̂(−q′,tw)〉ζθ
, (13)

we obtain

Sθ (q,q′,t,tw) = 4
∫ t

0

∫ tw

0
e−a(q)[t−τ+tw−τ ′]

×〈ζ̂θ (q,τ )ζ̂θ (−q′,τ ′)〉 dτ dτ ′

= 8σ 2L⊥L‖(q‖
n)2δq,q′e−a(q)[t+tw]

∫ tw

0
e2a(q)τ ′

dτ ′

= 4σ 2L⊥L‖(q‖
n)2

a(q)
δq,q′

{
e−a(q)[t−tw] − e−a(q)[t+tw]

}
,

(14)

where the waiting time tw � t . We note that the average
〈θ̂ (q,t)〉ζθ

vanishes for all times t . By using the spatial
translation invariance of the correlation function Cθ (r,r +
R,t,tw) and applying the Wiener-Khintchine theorem [60], the
following identity is obtained:

Sθ (q,q′,t,tw) = L⊥L‖δq,q′Sθ (q,t,tw), (15)

where Sθ (q,t,tw) ≡ ∫ L⊥
0

∫ L‖
0 e−iq·RCθ (R,t,tw)d2R is the two-

time structure factor. A comparison of Eqs. (14) and (15) yields

Sθ (q,t,tw) = 4σ 2(q‖
n)2

a(q)

{
e−a(q)[t−tw] − e−a(q)[t+tw]

}
. (16)
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The appearance of (q‖
n)2 in the numerator in Eq. (16) indicates

that there are no fluctuations with q
‖
n = 0. The latter corre-

spond to a pure compression or dilation of the stripe pattern,
which does not affect the orientation field. The equal-time
structure factor is given by

Sθ (q,t) = 4σ 2(q‖
n)2

a(q)
{1 − e−2a(q)t }. (17)

From this expression, we can immediately read off the
characteristic time constants describing the dynamics of spatial
orientation fluctuations with wave vectors q⊥

m and q
‖
n . The

characteristic times are largest for the smallest wave numbers
q⊥

1 = 2π/L⊥ and q
‖
1 = 2π/L‖ in a given system, correspond-

ing to spatial orientation fluctuations with wavelengths equal
to the system’s extensions L⊥ and L‖, respectively. We will
show below that these time constants determine the pathways
to equilibrium: The crossover time

τ⊥
C ≡ 1

2ν2
(L⊥/2π )2 (18)

and the equilibration time

τ ‖
eq ≡ 1

2ν4
(L‖/2π )4 (19)

is the time when the system reaches equilibrium. We will
show below that in systems with τ⊥

C < τ
‖
eq, the initial aging

and coarsening dynamics changes at τ⊥
C to the aging and

coarsening dynamics of a quasi-1D system. The condition
τ⊥

C < τ
‖
eq is met by systems with L⊥ < L2

‖/2πλp where λp

is the undulation penetration length. The interplay of the two
characteristic times τ⊥

C and τ
‖
eq and their dependence on the

system size will be a central topic of this work.
From the equal-time structure factor Sθ (q,t) [Eq. (17)] in

the limit t → ∞ we obtain the equilibrium structure factor

S
eq
θ (q) = 4σ 2(q‖

n)2

ν2(q⊥
m )2 + ν4(q‖

n)4
. (20)

Note that S
eq
θ (q) has the same q dependence as the light-

scattering intensity in smectic systems derived in Refs. [12,53],
because the fluctuations measured in such experiments are
director (i.e., orientation) fluctuations. Below we also consider
a cut through the equal-time structure factor parallel to the
stripes:

Sθ (q⊥
m = 0,q‖

n,t) = 4σ 2

ν4(q‖
n)2

[
1 − e−2ν4(q‖

n )4t
]
. (21)

The properties of Eq. (21) in an infinite system have been
discussed in Ref. [17]. Recapitulating briefly, this function ad-
mits the scaling form Sθ (q⊥ = 0,q‖,t) ∼ t2β+ 1

z f̂ (q‖t
1
z ), with

the exponents β = 1
8 and z = 4 determining the universality

class [61–63]. The structure factor has a single maximum at the
wave number q∗

‖ (t) ≡ 2π/λ∗(t) = 4
√

c0
2ν4t

, which shifts to ever
smaller wave numbers as time progresses, while the intensity at

the maximum increases as S∗
θ (t) ≡ S∗

θ [0,q∗
‖ (t),t] = 4σ 2

c1

√
2t

c0ν4

[17]. The constants c0 ≡ −W−1(−√
e/2) − 1/2 ≈ 1.2564,

where W−1(·) represents the negative branch of the Lambert
W function [64], and c1 ≡ (1 − e−c0 )−1 ≈ 1.3986.

C. Two-time correlation function Cθ (t,tw)

From the two-time structure factor [Eq. (16)], the cor-
responding two-time correlation function Cθ (t,tw) can be
obtained by summing over all wave vectors q �= 0:

Cθ (t,tw) = 1

L⊥L‖

∑
m,n

Sθ (q,t,tw)

= 1

L⊥L‖

∑
m,n

4σ 2(q‖
n)2

a(q)

{
e−a(q)[t−tw] − e−a(q)[t+tw]}

≡ I (t − tw) − I (t + tw). (22)

For convenience of notation, we have written Cθ (t,tw) as
the difference of two functions in Eq. (22). Considering the
summation over the allowed wave vectors explicitly yields
some insight into the behavior of finite systems, as we will
show in Sec. IV. Since Eq. (16) is an even function of both q⊥

m

and q
‖
n , we have

I (t) = 4σ 2

L⊥L‖

{
4

∞∑
m=1

∞∑
n=1

(q‖
n)2

a(q)
e−a(q)t

+ 2
∞∑

n=1

1

ν4(q‖
n)2

e−ν4(q‖
n )4t

}
, (23)

where the second sum over n accounting for the case m = 0.
The terms with n = 0 vanish since q

‖
n appears in the numerator

in Eq. (22).

D. Spatial correlation function Cθ (r⊥,0,t)

In our previous work [17], we investigated the behavior of
the spatial correlation function Cθ (r⊥,r‖ = 0,t) perpendicular
to the stripes, which is a special case of the quantity defined in
Eq. (6). For an infinite system, we found a growing correlation
length and a crossover from a short-range to a power-law decay.
Here we focus on the behavior in a finite system. The spatial
correlation function perpendicular to the stripes is given by

Cθ (r⊥,r‖ = 0,t) = 1

L⊥L‖

∑
m,n

Sθ (q,t,t) cos(q⊥r⊥)

= 4σ 2

L⊥L‖

{
4

∞∑
n=1

∞∑
m=1

(q‖
n)2

a(q)
[1 − e−2a(q)t ]

× cos(q⊥
mr⊥) + 2

∞∑
n=1

1

ν4(q‖
n)2

× [
1 − e−2ν4(q‖

n )4t
]}

. (24)

The spatial decay of this function indicates the average extent
of orientational domains in the direction perpendicular to the
stripes.

IV. RESULTS AND DISCUSSION

A. Short stripes: L⊥ � L‖

We first consider systems containing many short stripes,
where the system size L⊥ � L‖, while L‖ remains small.
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In Fig. 3(a) the temporal evolution of the spatial correlation
function Cθ (r⊥,r‖ = 0,t) is shown based on data from a stripe-
forming system with L⊥ = 384λ0 and L‖ = 8λ0. Initially the
correlation function decays rapidly and exhibits a growing
correlation length ξ⊥(t), closely resembling the behavior of
infinite systems [16,17]. However, at late times t � 5 × 103,
Cθ (r⊥,r‖ = 0,t) reaches equilibrium while still exhibiting
small fluctuations around its equilibrium state. This transition
is also visible in the time series of the correlation length ξ⊥(t),
plotted in Fig. 3(b) together with the dominant modulation
length λ∗

‖(t), which is extracted from the structure factor

Sθ (q⊥
m = 0,q

‖
n,t) parallel to the stripes. Notably both quantities

cross over to a constant value at approximately the same time
τ

‖
eq = 1

2ν4
(L‖/2π )4 [Eq. (19), indicated by a dashed vertical

line in Fig. 3(b)], namely, the time when λ∗
‖(t) reaches the

system size L‖ in the stripe direction. So the system size L‖
determines not only the saturation of the modulation length
λ∗

‖(t) parallel to the stripes, but also determines the equilibrium
correlation length ξ

eq
⊥ perpendicular to the stripes.

We note that we used the first moment to deter-
mine ξ⊥(t) from the numerical data: ξ⊥(t) ≡ K

∫ L⊥/2
0 r⊥

Cθ (r⊥,0,t) dr⊥/
∫ L⊥/2

0 Cθ (r⊥,0,t) dr⊥. With K = 1, this
method yields the exact correlation length in the case that
Cθ (r⊥,0,t) is a purely exponential function. For the numerical
evaluation, we chose an empirical value K = 4.5 to account for
deviations in the numerical data from the purely exponential
form.

For t � τ
‖
eq, the growth of λ∗

‖(t) and ξ⊥(t) is described
by the growth laws for infinite systems [17], namely,
λ∗

‖(t) = 2π 4
√

2ν4t/c0 and ξ⊥(t) = √
8ν2t [red lines in

Fig. 3(b)]. To further characterize the dynamics, we compute
the two-time correlation function Cθ (t,tw), shown in Fig. 3(c)
for a system with L⊥ = 384λ0 and L‖ = 3λ0. Plotted as a
function of t − tw, Cθ (t,tw) exhibits a rapid decay which
resembles an exponential [cf. the inset in Fig. 3(b)]. Most
importantly, the two-time correlation function does not depend
on the waiting time tw: it is time-translationally invariant.
This is a clear indication that the system is in equilibrium for
t � τ

‖
eq, where τ

‖
eq = 2.025 × 102 for L‖ = 3λ0.

To explain these numerical results, we calculate the corre-
sponding correlation functions of the Landau-Peierls model,
starting with the spatial correlation function Cθ (r⊥,r‖ = 0,t)
given in Eq. (24). In the limit L⊥ → ∞, we may replace the
sum 1

L⊥

∑
m by the integral 1

2π

∫
dq⊥, which leads to

Cθ (r⊥,r‖ = 0,t) = 2σ 2

L‖
√

ν2ν4

∞∑
n=1

{
e−(q‖

n )2λpr⊥

+ e−(q‖
n )2λpr⊥ erf

[√
2ν4t(q

‖
n)2 − r⊥√

8ν2t

]

− e(q‖
n )2λpr⊥ erfc

[√
2ν4t(q

‖
n)2 + r⊥√

8ν2t

]}
,

(25)

with the undulation penetration length λp ≡ √
ν4/ν2. The red

lines in Fig. 3(a) represent Eq. (25), with the sum truncated
after 105 terms. It was evaluated at the same times as the
numerical data. The best fit for the numerical data is obtained

FIG. 3. Pathway to equilibrium in systems comprised of short
stripes. (a) Temporal evolution of the spatial correlation function
Cθ (r⊥,r‖ = 0,t) for L⊥ = 384λ0 and L‖ = 8λ0. The solid red lines
represent the analytical result of Eq. (25) at the same times. The
curves for t = 5 × 104 and 5 × 105 overlap each other, indicating
that the coarsening has stopped. (b) Growing length scales ξ⊥(t) and
λ∗

‖(t) extracted from the same system as shown in (a). In the log-log
plot, the crossover from an algebraic increase to a constant value
at the equilibration time τ ‖

eq [Eq. (19)] is clearly visible. The lower
horizontal line represents the system size L‖, which limits λ∗

‖(t).
ξ⊥(t) approaches the equilibrium correlation length ξ̃

eq
⊥ [derived from

Eq. (27)], indicated by the upper horizontal line. (c) Equilibrium
dynamics of the two-time correlation function in a system with L⊥ =
384λ0 and L‖ = 3λ0. For the range of times shown here, Cθ (t,tw)
only depends on the difference t − tw. In the inset, the same data are
shown in a semilogarithmic plot. The solid red line is the theoretical
result given in Eq. (28).
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FIG. 4. Scaling behavior of the equilibrium spatial orientation correlation function C
eq
θ (r⊥,r‖ = 0) in rectangular systems containing short

stripes (L⊥ � L‖). (a) The equilibrium correlation function is plotted as a function of the distance r⊥ for different system sizes L‖. The
equilibrium correlation length increases with L‖. (b) The rescaled equilibrium correlation function C

eq
θ (r⊥,r‖ = 0)L‖ is plotted as a function of

the scaling variable r⊥/L2
‖ for different system sizes. The black line represents the analytical result given by Eq. (27).

for a noise strength σ 2 = 0.008, which we use throughout the
rest of this work. We observe excellent agreement between
theory and the numerical data, noting that the correlation
function becomes independent of time for t � τ

‖
eq, where

τ
‖
eq ≡ 1

2ν4
(L‖/2π )4 ≈ 1.024 × 104 for L‖ = 8λ0.

We note that the spatial correlation function [Eq. (25)] can
be written in scaling form: Cθ (r⊥,r‖ = 0,t) = f [ r⊥

ξ⊥(t) ,
r⊥
ξ

eq
⊥

, t

τ
‖
eq

],

where we identify the following quantities: the equilibration
time τ

‖
eq according to Eq. (19), the time-dependent correlation

length ξ⊥(t) ≡ √
8ν2t , which we already encountered in our

previous work [17], and the equilibrium correlation length

ξ
eq
⊥ ≡ λ−1

p (L‖/2π )2. (26)

We now discuss the properties of Cθ (r⊥,r‖ = 0,t) in more
detail. The time t enters Eq. (25) solely through the arguments
of the error functions erf[g1(t)] and erfc[g2(t)], with g1(t) ≡√

nt/τ
‖
eq − r⊥/ξ⊥(t) and g2(t) ≡

√
nt/τ

‖
eq + r⊥/ξ⊥(t). Both

functions diverge in the limit t → ∞, causing the error
functions to approach the constants 1 and 0, respectively. This
marks the end of the temporal evolution. In comparison, it
is easy to see that ξ⊥(t) represents the growing correlation
length at early times, when the terms involving ξ⊥(t) are large.
The crossover between these two behaviors is mediated by the
time τ

‖
eq for both g1(t) and g2(t). The function g1(t) increases

monotonously from the limit g1(t → 0) = −∞, with a zero
crossing at t = t0 =

√
τ

‖
eq/ν2r⊥. g2(t) is strictly positive, with

a global minimum also at t = t0. Finally, in the limit t → ∞,
Eq. (25) reduces to

C
eq
θ (r⊥,r‖ = 0) = 4σ 2

L‖
√

ν2ν4

∞∑
n=1

e−(q‖
n )2λpr⊥

= 2σ 2

L‖
√

ν2ν4

[
ϑ3

(
0,e−r⊥/ξ

eq
⊥
) − 1

]
, (27)

where ϑ3(·,·) is a Jacobi theta function. Equation (27) can
be written in scaling form: C

eq
θ (r⊥,r‖ = 0) ∼ L−1

‖ f (r⊥/L2
‖),

where ξ
eq
⊥ ∼ L2

‖. We note that the first moment, which we use
to extract the correlation length ξ⊥(t) from the numerical data,
can be computed exactly for Eq. (27), resulting in ξ̃

eq
⊥ = π2

15 ξ
eq
⊥ .

This quantity is represented by the dashed horizontal line in
Fig. 3(b).

C
eq
θ (r⊥,r‖ = 0) diverges as a power law ∼r

−1/2
⊥ for small

values of r⊥. This behavior compares to that of the spatial cor-
relation function in an infinite system, where a power-law de-
cay ∼r

−1/2
⊥ is observed in the limit t → ∞ [17]. In contrast to

the infinite system, the equilibrium correlation function given
by Eq. (27) decreases exponentially (∼e−r⊥/ξ

eq
⊥ ) as r⊥ → ∞.

In Fig. 4(a) the equilibrium spatial correlation function
C

eq
θ (r⊥,r‖ = 0) is plotted for different system sizes L‖,

with L⊥ = 384λ0. It is apparent that the correlation length
perpendicular to the stripes increases as a function of L‖.
To confirm this and to compare the numerical data with the
theoretical result [Eq. (27)], we multiplied C

eq
θ (r⊥,r‖ = 0) by

L‖ and plotted it as a function of the rescaled distance r⊥/L2
‖

[Fig. 4(b)]. The data from systems with different sizes L‖
collapse onto a single curve, thereby confirming the scaling
form of Eq. (27), and even the shape of the scaling function is in
excellent agreement with the theoretical prediction [Eq. (27)].

At this point, we note that the relation between the
equilibrium correlation length and the system size ξ

eq
⊥ ∼ L2

‖
[Eq. (26)] can be reproduced exactly if one utilizes de Gennes’
argument (p. 354 in Ref. [12]) that a modulation along the
stripe (layer) with wave number k = 2π/L‖ is attenuated in the
direction perpendicular to the stripes over a distance 1/k2λp.
This distance equals the equilibrium correlation length ξ

eq
⊥

[Eq. (26)]. De Gennes has also shown [12,53] that fluctuations
of the smectic layers, as detected by light scattering, result in a
high intensity for wave numbers ν2q

2
⊥ < ν4q

4
‖ (in our notation),

which expresses a similar relation of length scales parallel and
perpendicular to the stripes [65].
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FIG. 5. Equilibrium behavior of the two-time correlation function Cθ (t,tw) in systems containing short stripes. (a) Cθ (t,tw) is plotted as a
function of t − tw for different system sizes L‖. The waiting time tw = 5 × 105. (b) The same data, rescaled by L‖, are plotted as a function of
(t − tw)/L4

‖. The black line represents Eq. (29).

We now turn to the temporal evolution of the orientation
fluctuations in systems comprised of short stripes. To obtain
the two-time correlation function Cθ (t,tw), we replace the sum

1
L⊥

∑
m in Eq. (23) by the integral 1

2π

∫
dq⊥:

Cθ (t,tw) = 4σ 2

L‖
√

ν2ν4

∞∑
n=1

{erfc[
√

ν4(q‖
n)4(t − tw)]

− erfc[
√

ν4(q‖
n)4(t + tw)]}. (28)

Cθ (t,tw) according to Eq. (28) is plotted for L⊥ = 384λ0

and L‖ = 3λ0 in the inset in Fig 3(c). The numerical data
collapse for different waiting times and are well described by
the theoretical prediction. As seen in the semilogarithmic plot,
the decay of the two-time correlation function is rapid, but it
is slightly different from a purely exponential decay.

Since the complementary error function in Eq. (28) decays
rapidly for large arguments, the two-time correlation function
Cθ (t,tw) depends only on t − tw for tw → ∞:

C
eq
θ (t − tw) = 4σ 2

L‖
√

ν2ν4

∞∑
n=1

erfc[
√

ν4(q‖
n)4(t − tw)]. (29)

In this limit, the dynamics becomes time-translationally invari-
ant as equilibrium is reached. Equation (29) can be written in
the following scaling form: Ceq

θ (t − tw) ∼ 1
L‖

f [(t − tw)/2τ
‖
eq],

with the equilibration time τ
‖
eq as given in Eq. (19).

In Fig. 5 we take the theoretical predictions of Eq. (29),
truncating the sum after 105 terms, and compare them with
numerical data for a late waiting time tw = 5 × 105 and
different system sizes L‖. The size L⊥ = 384λ0 is kept
constant. In Fig. 5(a) Cθ (t,tw) is plotted as a function of the
difference t − tw. The two-time correlation function decays
more slowly as the system size L‖ is increased. While Cθ (t,tw)
resembles a power law in large systems, it behaves more like
an exponential for small values of L‖. In Fig. 5(b) we test the
scaling properties of Cθ (t,tw) by plotting the rescaled function
Cθ (t,tw)L‖ as a function of (t − tw)/L4

‖. We observe a collapse

of the data for different system sizes onto a master curve.
Furthermore, there is excellent agreement with the theoretical
prediction for C

eq
θ (t − tw) [Eq. (29)].

To summarize, in finite systems with L⊥ � L‖, the orien-
tation dynamics, as represented by the two-time correlation
function Cθ (t,tw), becomes time-translationally invariant for
long waiting times tw � τ

eq
‖ . This is a clear indication that the

system has reached equilibrium. In equilibrium, C
eq
θ (t − tw)

decays similar to an exponential with a characteristic time
scale τ

‖
eq, which increases as the fourth power of the system size

L‖. The spatial orientation correlation function C
eq
θ (r⊥,r‖ = 0)

decays asymptotically as an exponential with the correlation
length ξ

eq
⊥ = λ−1

p (L‖/2π )2. Last, the dominant modulation
length λ∗

‖ has reached the system size L‖. Thus, we conclude
that, once the elastic constants ν2 and ν4 are fixed, all
equilibrium quantities are determined by L‖.

B. Long stripes: L⊥ � L‖

We now turn to the case L⊥ � L‖, corresponding to
systems containing a small number of long stripes. In Fig. 6(a)
the characteristic length scales ξ⊥(t) and λ∗

‖(t) are plotted as
function of time for a system with L⊥ = 8λ0 and L‖ = 384λ0.
The correlation length increases initially as t1/2 and later
approaches a constant value prescribed by the system size L⊥.
Since for L⊥ = 8λ0, the crossover time τ⊥

C = 1
2ν2

(L‖/2π )2 =
40 [Eq. (18)], this coarsening dynamics corresponds to that of
a quasi-1D system, as described below, whereas the dominant
modulation length λ∗

‖(t) grows as a power law ∼t1/4, even at
the latest times.

In Fig. 6(b) the two-time correlation function Cθ (t,tw) is
plotted as a function of t − tw for different waiting times tw.
Cθ (t,tw) clearly depends on tw, with the relaxation becoming
slower and the magnitude becoming larger as the waiting
time is increased. Thus, a system containing long stripes
exhibits aging within the time range t � 5 × 105 studied in our
numerical simulations. This is expected, since the equilibration
time τ

‖
eq = 5.4 × 1010 for L‖ = 384λ0.
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FIG. 6. Coarsening and aging in systems comprised of long
stripes. (a) Growth of the length scales λ∗

‖(t) and ξ⊥(t) for
L⊥ = 8λ0. The solid red line is a power law ∼t1/4, indicating
the ongoing growth of the dominant modulation length λ∗

‖(t).
The correlation length ξ⊥(t) approaches the system size L⊥, in-
dicated by the dashed horizontal line. The dashed vertical line
represents the characteristic time τ⊥

C [Eq. (18)]. (b) Aging dy-
namics in the same system. Cθ (t − tw) is plotted as a function
of the difference t − tw. The solid red lines represent Eq. (31).
(c) Scaling behavior of Cθ (t,tw). The data for different system sizes
and waiting times collapse onto a single curve upon rescaling. The
solid red line represents the rescaled Cθ (t,tw) according to Eq. (31).
The dashed black line is a power law indicating the asymptotic
behavior of the scaling function.

To explain these observations, we use the Landau-Peierls
model to calculate the corresponding two-time correlation
function. In the limit L‖ → ∞, the sum 1

L‖

∑
n in Eq. (23)

can be replaced by the integral 1
2π

∫
dq‖. Carrying out the

integration yields

I (t) = 2σ 2

πL⊥

⎧⎨
⎩

√
2π(

ν2ν
3
4

) 1
4 �

(
1
4

)
∞∑

m=1

1√
q⊥

m

�

[
1

4
,ν2(q⊥

m )2t

]

− 2
√

2π

ν
3/4
4 �

(
1
4

) t
1
4

}
. (30)

For t � τ⊥
C , the terms in the remaining sum over m are

exponentially small and can therefore be neglected. In com-
parison, the magnitude of the second term in Eq. (30),
which corresponds to pure bending fluctuations with q⊥

m = 0,
increases ∝ t

1
4 . This leads to the two-time correlation function

Cθ (t,tw) = 4
√

2σ 2

L⊥ν
3/4
4 �

(
1
4

) [(t + tw)
1
4 − (t − tw)

1
4 ], (31)

represented by the red lines in Fig. 6(b). Apart from small
deviations for small time differences t − tw, we observe
excellent agreement between theory and the numerical data.

Apart from the prefactor, the result for Cθ (t,tw) given
in Eq. (31) is identical to the two-time correlation function
obtained from the 1D Mullins-Herring equation with con-
served noise (MHc) [61–63], namely, Eq. (12) in one spatial
dimension with ν2 = 0. Equation (31) can be written in scaling
form, Cθ (t,tw) ∼ t−b

w f (t/tw), where the aging exponent b =
− 1

4 . This exponent can also be written as b = −2β [66],
with β = 1

8 , which is the growth exponent of the 1D MHc
equation [41,61,62]. We note that b = − 1

4 < 0 indicates that
the orientation fluctuations grow without bounds, leading to
the destruction of orientational order. This stands in contrast
to the infinite system, where b = 1

4 [17], and orientational
order is retained [26]. The scaling function characterizing
Cθ (t,tw) is given by f (t/tw) = (t/tw + 1)

1
4 − (t/tw − 1)

1
4 . For

large ratios t/tw → ∞, it decays as a power law f (t/tw) ∼
(t/tw)−

3
4 , which defines the autocorrelation exponent [31]

λC = 3
4 .

The system size L⊥ appears only in the prefactor of
Eq. (31). To test the corresponding finite-size behavior and the
temporal scaling, we plotted the rescaled correlation function

Cθ (t,tw)t
− 1

4
w L⊥ as a function of t/tw − 1 in Fig. 6(c). The

data for two different system sizes and multiple waiting times
collapse onto a single curve, which is well described by the
scaling function predicted by theory, g(x) = (x + 2)

1
4 − x

1
4 ,

with x ≡ t/tw − 1. Asymptotically, g(x) behaves as a power
law ∼x−λC with the exponent λC = 3

4 . This power law is
indicated by the dashed black line in Fig. 6(c).

For t < τ
‖
eq, aging is present even in systems with L⊥ =

λ0, corresponding to a single long stripe (data not shown).
However, the magnitude of the correlation function Cθ (t,tw) is
smaller than predicted by theory for L⊥ < 4λ0. This is likely
due to an interplay of the stripe width λ0 and the system size
L⊥. Such an effect is not accounted for by the Landau-Peierls
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FIG. 7. Pathway to equilibrium in square systems. (a) Growth of
the length scales λ∗

‖(t) and ξ⊥(t) in a system with L⊥ = L‖ = 16λ0.
The corresponding characteristic times τ⊥

C and τ ‖
eq are marked with

vertical dashed lines. The dashed horizontal line indicates the system
size, which limits the growth of both length scales. Note that τ⊥

C �
τ ‖

eq. (b) Equilibrium dynamics of the two-time correlation function for
L⊥ = L‖ = 3λ0, where C

eq
θ (t − tw) depends only on the difference

t − tw. The inset shows the same data on a semilogarithmic scale.
The solid red line is an exponential according to Eq. (33).

model, since the latter describes a coarse-grained orientation
field θ (r,t), not individual stripes.

C. Square systems: L⊥ = L‖

Finally, we consider square systems with size L⊥ = L‖,
where the temporal evolution exhibits a transient behavior with
features seen in systems with short stripes as well as those with
long stripes. In Fig. 7(a) we plot the two characteristic length
scales λ∗

‖(t) and ξ⊥(t) for a system with L⊥ = L‖ = 16λ0.
Both quantities initially grow as power laws of time before
approaching their equilibrium values at late times. Notably,
the correlation length ξ⊥(t) exhibits signs of saturation several
decades earlier in time than the dominant modulation length
λ∗

‖(t). The reason for this behavior is that τ⊥
C = 1.60 × 102 �

τ
‖
eq = 1.64 × 105 for L⊥ = L‖ = 16λ0 [Eqs. (18) and (19)].

At t = τ⊥
C , the system displays a crossover to the dynamics of

a quasi-1D system. For τ⊥
C < t < τ

‖
eq, the observed growth of

the dominant modulation length λ∗
‖(t) is described by the 1D

MHc equation. At t = τ
‖
eq, the system reaches equilibrium.

In Fig. 7(b) the two-time correlation function is plotted as
a function of t − tw for a smaller system with L⊥ = L‖ =
3λ0, which reaches equilibrium at earlier times than the one
considered before. Cθ (t,tw) is independent of the waiting time
tw within the range of times considered here, which indicates
equilibrium dynamics. In the inset, the same data are plotted
on a semilog scale, showing that the decay of the correlation
function is consistent with an exponential.

This equilibrium behavior can also be explained using
the Landau-Peierls model. The two-time correlation function
Cθ (t,tw) is given by Eq. (23), where we now consider both
L⊥ and L‖, to be finite. Since all terms appearing in Eq. (23)
are weighted with an exponential that decays rapidly for large
indices m and n, we can approximate I (t) by retaining only
those terms corresponding to m,n � 1:

I (t) ≈ 4σ 2

{
4L2

⊥L2
‖

ν2L
4
‖ + 4ν4π2L2

⊥
e−[ν2(2π/L⊥)2+ν4(2π/L‖)4]t

+ 1

2ν4π2
e−ν4(2π/L‖)4t

}

≈ 2σ 2

ν4π2
e−ν4(2π/L‖)4t . (32)

At late times t , the only relevant term is the second one in
Eq. (32), since the first term is exponentially smaller. Finally,
we arrive at the following expression for the equilibrium two-
time correlation function, valid for waiting times tw � t − tw,
where I (t + tw) is negligible:

C
eq
θ (t − tw) = 2σ 2

ν4π2
e−(t−tw)/2τ

‖
eq . (33)

Clearly, C
eq
θ (t − tw) is time-translationally invariant, since it

depends only on the difference t − tw. The exponential in
Eq. (33) decays with a time constant 2τ

‖
eq. Ceq

θ (t − tw) is plotted
as a dotted black line in the inset in Fig. 7(b). This approximate
result can be compared to a numerical evaluation of the exact
correlation function [Eq. (32)], which is plotted as a solid
red line in the inset. The differences are insignificant, thus
justifying our assumptions leading to Eq. (33).

We now turn to the dynamics of the structure factor Sθ (q⊥
m =

0,q
‖
n,t), which represents the behavior of the undulation modes

in the direction of the stripes. As opposed to an infinite
system, where q‖ is continuous, there are only discrete wave
numbers in a finite system. Therefore, the wave number
q∗

‖ (t) corresponding to the peak position cannot become
smaller than the wave number 2π/L‖ determined by system
size L‖. Setting q∗

‖ (t) = 2π/L‖ yields the characteristic time

τ0 ≡ c0
2ν4

(L‖/2π )4 = c0τ
‖
eq (with c0 ≈ 1.2564, as given in

Sec. III B). At t = τ0, the position of the maximum S∗
θ (t)

reaches the smallest possible wave number. This compares
to the time τ

‖
eq when the exponential in Eq. (21) has decreased

by a factor of e−1 for the smallest wave number q
‖
1 = 2π/L‖.
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FIG. 8. Growth and saturation of the peak intensity S∗
θ (t) in small

square systems. The continuous black lines represent the theoretical
result [Eq. (34)], while the dashed lines indicate the equilibration
time τ ‖

eq. The inset shows the evolution of the structure factor Sθ (q⊥
m =

0,q‖
n,t) for the system with L⊥ = L‖ = 8λ0.

The peak intensity in a finite system can thus be written as a
piecewise-defined but continuous function

S∗
θ (t) =

{
σ 2

π2c1ν4
L2

‖
√

t/τ0, t � τ0,

σ 2

π2ν4
L2

‖[1 − e−c0t/τ0 ], t > τ0,
(34)

representing a power-law increase ∼t
1
2 at early times t � τ0,

followed by an exponential approach to the equilibrium
value S

∗,eq
θ ≡ Sθ (q⊥

m = 0,2π/L‖,∞) = σ 2

π2ν4
L2

‖ at late times
t > τ0. We test the predictions from Eq. (34) in Fig. 8. The
inset demonstrates the evolution of the entire structure factor
Sθ (q⊥ = 0,q‖,t), which is characterized by a shift of the peak
position towards the smallest wave number, as well as an
increase in the peak intensity. In the main panel, the peak
intensity S∗

θ (t) is plotted as a function of time for two systems
with L⊥ = L‖ = 3λ0 and 8λ0, respectively. In both cases,
S∗

θ (t) first grows as a power law and approaches an equilibrium
value at late times. This dependency, including the crossover
to equilibrium controlled by τ

‖
eq, is well described by Eq. (34).

The peak intensity S∗
θ (t) can be written in a scaling form

equivalent to the Family-Vicsek scaling [42] observed in
surface roughening phenomena [41,59]:

S∗
θ (t) ∼ L2α+1

‖ ĝ(t/Lz
‖), (35)

with the scaling exponents α = 1
2 and z = 4 related by α/β =

z. Therefore, examining data from finite systems provides
access to the exponent α and complements our study of the
dynamics in infinite systems [17]. We note that the growth
exponent α can also be extracted from the power-law decay of
the equilibrium structure factor [62], where S

eq
θ (q⊥

m = 0,q
‖
n) =

4σ 2

ν4(q‖
n)

2 ∝ (q‖
n)−2α−1 is the limit t → ∞ of Eq. (21). Since a cut

through the structure factor Sθ (q⊥
m = 0,q

‖
n,t) is only sensitive

to the system size L‖, the extension perpendicular to the stripes
L⊥ is not expected to influence the scaling behavior.

FIG. 9. Common scaling behavior of the structure factor
S

eq
θ (q⊥

m = 0,q‖
n) in small square systems (+) and systems containing

many short stripes (◦). The black line represents a power law drawn
to illustrate the scaling behavior at small wave numbers q‖

n .

In Fig. 9 the equilibrium structure factor S
eq
θ (q⊥

m = 0,q
‖
n)

is plotted for both small square systems and rectangular
systems with L⊥ � L‖. In the latter case, the system size
L‖ parallel to the stripes was varied, while L⊥ = 384λ0

was kept constant. For small wave numbers q‖/q0 � 1, the
structure factor exhibits power-law behavior ∝q−2

‖ . At large
wave numbers q‖/q0 � 1, a much faster decay is observed,
which coincides with the range where the time-dependent
structure factor shows no evolution [17]. It is easy to see that
the shape of S

eq
θ (q⊥

m = 0,q
‖
n) does not change as a function of

the system size. Furthermore, the data points for square and
rectangular systems overlap each other. However, the larger the
system size L‖, the smaller the minimal wave number 2π/L‖,
and thus the range in which the structure factor exhibits the
power law increases with the system size.

To further investigate the dynamics and the scaling behavior
in both square and rectangular systems, we have plotted
the equilibrium peak intensity S

∗,eq
θ as a function of L‖ in

Figs. 10(a) and 10(c). In both cases, S
∗,eq
θ increases as the

square of the respective system size, leading to the exponent
α = 1

2 according to Eq. (35). Only the intensity for the
square system with L‖ = 16λ0 falls slightly short of the value
expected from theory.

Finally, we plot the numerical data in scaling form ac-
cording to Eq. (35). This is shown in Figs. 10(b) and 10(d),
where a collapse onto the same master curve is observed after
rescaling the intensity by L2

‖ and the time by L4
‖. This confirms

the functional dependence of the structure factor on the system
size L‖, with the exponents α = 1

2 and z = 4 in agreement with
the values obtained in Ref. [17]. We note that the divergence of
the equilibration time τ

‖
eq ∼ Lz

‖ is consistent with the growth

of the dominant modulation length λ∗
‖(t) ∼ t

1
z observed here

and in our previous work, indicating that a single exponent z

determines the behavior of the time scale and the length scale.
The system size L‖ controls the equilibration of S∗

θ by limiting
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FIG. 10. Finite-size scaling of the peak intensity S∗
θ in (a), (b) square systems and (c), (d) rectangular systems consisting of short stripes.

In (a) and (c), the equilibrium value S
∗,eq
θ is plotted as a function of the system sizes L‖. The dashed red lines represent a power law. In (b) and

(d), the peak intensity S∗
θ (t) has been rescaled, demonstrating a scaling collapse for different system sizes. The black lines represent Eq. (34).

the dominant modulation length λ∗
‖ and therefore the length

scale of the orientation fluctuations parallel to the stripes.

V. CONCLUSIONS

In Fig. 11 we give an overview of the different system
sizes for which we performed simulations of the phase-field
model for a stripe-forming system. The equilibration time τ

‖
eq

[Eq. (19)] grows as the fourth power of L‖ and is represented
by dashed vertical lines in Fig. 11. This restricts the size of
the systems for which equilibrium could be attained within
the time range t � 5 × 106 of our numerical simulations.
Systems which reached equilibrium are indicated by closed
circles in Fig. 11, whereas open circles indicate systems which
remained out of equilibrium. Another way to differentiate
systems of finite size involves the condition τ⊥

C < τ
‖
eq, which

is met by systems with (L⊥/λ0) < 2(L‖/λ0)2. This condition
is represented by the solid red line in Fig. 11 (in our case,
λp = λ0/4π ). In the systems located below this line, the
dynamics switches at t = τ⊥

C from initially unperturbed aging

and coarsening (comparable to that of an infinite 2D system)
to the aging and coarsening dynamics of a quasi-1D system
described by the 1D MHc equation [61–63], before reaching
equilibrium at t = τ

‖
eq. The systems above the solid red line

approach the equilibrium directly. This pathway is taken by
systems containing short stripes. We refer to this pathway
as 2D equilibration behavior in contrast to the pathway to
equilibrium via the 1D MHc behavior.

The condition L⊥ < L2
‖/2πλp is equivalent to the condition

L⊥ < 2πξ
eq
⊥ . In these systems, the equilibrium correlation

length ξ
eq
⊥ would be close to or larger than L⊥. Thus,

at sufficiently late times, the orientation fluctuations are
correlated across the entire system width, corroborating the
notion of quasi-1D behavior. This scenario is realized in
systems containing long stripes. We note that the large square
system with L⊥ = L‖ = 55λ0 studied numerically in Ref. [17]
also falls into this regime, since τ⊥

C = 1.89 × 103 and τ
‖
eq =

2.29 × 107. Therefore ξ⊥(t) exceeds the system size L⊥ at
late times, but the system does not reach equilibrium within
the time range studied in Ref. [17].
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FIG. 11. Map of the pathways to equilibrium. Closed (open)
circles indicate that equilibrium was reached (not reached) in
numerical simulations of Eq. (3). The dashed vertical lines represent
the equilibration time τ ‖

eq for a given value of L‖. The solid red line
represents the condition τ⊥

C < τ ‖
eq. Systems located below this line

approach equilibrium via the 1D MHc behavior. Systems above the
solid red line display 2D equilibration behavior.

Our results show that orientation fluctuations in finite
stripe phases with periodic boundary conditions approach
equilibrium along different pathways, depending on the system
sizes L⊥ and L‖, their aspect ratio, and the undulation
penetration length λp as shown in Fig. 11. All systems reach

equilibrium and display finite-size scaling of the characteristic
times τ⊥

C and τ
‖
eq, as well as the length scales given by the

equilibrium correlation length ξ
eq
⊥ and the dominant modula-

tion length λ∗
‖. Furthermore, we demonstrate finite-size scaling

of the two-time correlation function Cθ (t,tw), the structure
factor S

eq
θ (q⊥

m = 0,q
‖
n), and the spatial correlation function

C
eq
θ (r⊥,r‖ = 0). In all cases, we find excellent agreement

between our numerical results and the analytical predictions
based on the Landau-Peierls model for the stripe orientation.
In particular, the scaling of the structure factor S

eq
θ (q⊥

m = 0,q
‖
n)

corresponds to the universality class of the 1D MHc equation,
as shown for an infinite system in Ref. [17].

We expect that the presented methodology, namely, the
extraction of the orientation field and the study of its correlation
functions, can be used for characterizing the dynamics of
stripe phases in other types of confinement, particularly in
the case of no-flux boundary conditions (solid walls) [67,68].
Such conditions are often realized in experimental studies
on block copolymer thin films [69–72]. Furthermore, the
Landau-Peierls model is also applicable to lamellae-forming
systems and smectic liquid crystals in three spatial dimensions
[12]. The equilibrium behavior of undulation fluctuations in
liquid crystals has been studied extensively theoretically and
experimentally [12,20]. However, the pathways to equilibrium,
especially starting from a perfectly ordered state, as well
as anharmonic effects of thermal fluctuations that cause a
breakdown of linear elasticity theory [73–75], remain to be
explored.
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