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Aging of orientation fluctuations in stripe phases
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Stripe patterns, observed in a large variety of physical systems, often exhibit a slow nonequilibrium dynamics
because ordering is impeded by the presence of topological defects. Using computer simulations based on a
well-established model for stripe formation, we show that a slow dynamics and aging occur also in stripe patterns
free of topological defects. For a wide range of noise strengths, the two-time orientation correlation function
follows a scaling form that is typical for systems exhibiting a growing length scale. In our case, the underlying
mechanism is the coarsening of orientation fluctuations, ultimately leading to power-law spatial correlations
perpendicular to the stripes. Our results show that even for the smallest amount of noise, stripe phases without
topological defects do not reach equilibrium. This constitutes an important aspect of the dynamics of modulated
phases.
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I. INTRODUCTION

The formation of spatially extended patterns is a complex
and much-studied phenomenon [1]. In particular, stripe pat-
terns are observed in physical systems as diverse as block
copolymers [2], thin magnetic films [3], and high-Tc super-
conductors [4], as well as Rayleigh-Bénard convection [5].
Stripes can be described as a density profile which is periodic
in only one spatial dimension. Such systems are known
to be strongly influenced by fluctuations, especially in low
dimensions [6]. A question which has not been considered
before is how stripe patterns approach equilibrium, starting
from an ordered state under the influence of noise. The
aging effect, where important properties of a system strongly
depend on the waiting time, is well known from the study of
glassy systems [7], which by definition do not reach thermal
equilibrium. Although glasses are ubiquitous in nature, the
glass transition and the associated slow dynamics are still
not completely understood [8,9]. In trying to model glasses,
much effort has been spent investigating systems with self-
generated as well as quenched disorder [10,11]. The picture
that has emerged is one of a rugged energy landscape in
configuration space, where a system evolves between a large
number of local minima. Quenched disorder, however, is not
a requirement for the observation of a glassy dynamics and
aging [12]. For instance, domain growth is one scenario where
aging is observed [13,14]. Certain stripe-forming systems do
exhibit domain growth, with domains consisting of regions
of parallel stripes [15–17]. Some aspects of glassy dynamics
have been identified in the process of domain coarsening
in one [18] and two spatial dimensions [19]. In the latter
work, the pinning of grain boundaries was reported to lock
the system in a state lacking long-range order. Using replica
calculations, Schmalian and Wolynes have been able to
show that a particular model for stripe formation exhibits
a glass transition due to the emergence of an exponentially
increasing number of metastable states [20]. Their work,
as well as a later study specific to block copolymers [21],
did not address the dynamics of the system. On the other
hand, the slow relaxation after a quench within the ordered

lamellar phase has been investigated using a linear stability
analysis [22].

In this work, we use computer simulations based on a well-
established model for a stripe-forming system to investigate the
slow orientational dynamics of stripes in the ordered state. We
will show below that even a small amount of noise gives rise
to small-angle orientation fluctuations which exhibit aging,
as revealed by investigating the two-time autocorrelation
functions. Topological defects and metastable states, which
are often associated with slow dynamics, are not responsible
for the aging effects we observe. This result has important
implications for the interpretation of the thermodynamics
of stripe phases. More generally, our results emphasize the
importance of small shape fluctuations for the slow dynamics
of modulated phases [23].

II. MODEL AND METHODS

As a model system, we study the well-known model B [24]
with Coulomb interactions. The dynamic equation is

∂ψ

∂t
= ∇2 δF

δψ
+ ξ, (1)

where the scalar field ψ(r,t) represents, for example, a
conserved magnetic quantity or the concentration difference
ψA − ψB between two species A and B. F is the free-energy
term introduced by Ohta and Kawasaki for modeling diblock
copolymer melts below the critical temperature [25]:

F[ψ] =
∫

ddr

{
− ψ(r,t)2

2
+ ψ(r,t)4

4
+ 1

2
[∇ψ(r,t)]2

}

+ �

2

∫ ∫
ddr ′ψ(r′,t)G(r′,r)ψ(r,t)ddr, (2)

where d is the dimension of the system and G(r,r′) is
defined by ∇2G(r,r′) = −δ(r − r′). The first integral in Eq. (2)
is the usual Ginzburg-Landau term, whereas the second
integral describes long-range Coulomb interactions. ξ (r,t)
is Gaussian white noise characterized by 〈ξ (r,t)〉 = 0 and
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FIG. 1. (Color online) Two types of slow dynamics in stripe patterns starting from different initial conditions. (a)–(c) Homogeneous
initial state. (d)–(f) Striped initial state. The noise strength η/ηc = 1

30 in both cases. (a) and (d) show binarized snapshots representing the
corresponding dynamics of the concentration field ψ(r,t). The free-energy density ρF (t) decays slowly for homogeneous initial conditions
(b), whereas it becomes stationary in the ordered system (e). During defect annihilation, the orientational order parameter S(t) remains close
to zero for a long time, but approaches unity at later times (c). In contrast, the ordered system exhibits a very slow but ongoing decay
of S(t) (f).

〈ξ (r,t)ξ (r′,t ′)〉 = −2ηδ(t − t ′)∇2δ(r − r′), where 〈·〉 stands
for the statistical average and η parameterizes the noise
strength. While this model describes a conserved quantity
ψ(r,t) and contains long-range interactions, none of these
properties are essential for the dynamics described below, as
shown by further results [26] for the conserved and noncon-
served Swift-Hohenberg equation [27]. The aforementioned
models are all examples for a class of systems first discussed
by Brazovskiı̌ [28].

The equation obtained by inserting Eq. (2) into Eq. (1) has
been widely used in numerical studies of the microphase sep-
aration and microdomain ordering in block copolymers [29–
33], and continues to be used today [34–37]. The same model
also describes reactive binary mixtures [38,39]. Recently, it
has been used to study the possible applications of block
copolymer thin films as lithographic resists [40–42]. There
is also a large body of work concerning Coulomb-frustrated
ferromagnets [43–45]. For further applications of this model,
see Ref. [46]. For � = 0, the model describes the macrophase
separation for a conserved order parameter, namely, spinodal

decomposition [13,47]. The system forms stripes within the
range 0 < � < 1

4 [15]. The influence of additive noise on
stripe patterns has been investigated to some extent in previous
works [48–51]. For a given value of �, a critical noise level ηc

exists which marks an order-disorder transition (ODT) [48].
In our case, ηc = 0.020(3). The properties of the ODT are not
central to this work, as we focus on the behavior in the ordered
phase far below the critical noise strength.

We have numerically solved Eqs. (1) and (2) for d = 2 on a
square lattice of size L × L, with L = 517 and a lattice spacing
	x = 1, using a pseudospectral algorithm with a third-order
scheme for the time integration [52] and periodic boundary
conditions. We have also checked the validity of our results
for larger systems up to L = 1710. The initial conditions were
parallel stripes given by ψ(x,y) = A cos(kx). The amplitude
A and wave number k were computed using this single-mode
approximation by minimizing the free energy, yielding A =
2
√

(1 − 2
√

�)/3 and k = �1/4 [39]. The time step 	t = 0.1
and � = 0.2 were kept constant in all simulations. The
values for L were chosen to be commensurable with the
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stripes’ wavelength λ ≈ 9.4, but a small mismatch as well
as global rotation of the system have no significant influence
on the results presented below. The local stripe orientation
θ (r,t), commonly used to investigate the physics of stripe
patterns [15,16,53], was computed using the gradient-square
tensor implemented in reciprocal space [54].

III. RESULTS

A. Types of slow dynamics

The dynamics observed in the stripe-forming system
is largely determined by the initial conditions. Usually, a
homogeneous state is prepared that represents a high-
temperature mixture of the two components. The evolution is
then followed after quenching to a region of the phase diagram
where the mixed state is unstable [29]. In this work, we focus
on the relaxation from a completely ordered state, that is, a
pattern of parallel stripes, with a finite noise strength. Some
examples of the evolution resulting from the two different
initial conditions are shown in Fig. 1. The free-energy density
ρF ≡ F[ψ]/L2 quickly decreases for 0 < t � 500 in the case
of homogeneous initial conditions, which is associated with
stripe formation, but the subsequent evolution is slow. At late
times, the orientational order parameter S(t) ≡ |〈e2iθ(r,t)〉r|
approaches unity, as most defects in the system have been
annihilated. In contrast, the free-energy density of an ordered
system initially increases slightly for t � 100, as the pattern
is perturbed by the noise, and then remains constant. The
apparent growth of fluctuations in ρF is an effect of displaying
the data on a logarithmic time scale. The orientational order
parameter S(t) remains close to unity at all times, but does not
reach a stationary value. While the slow dynamics caused
by domain growth and annihilation of topological defects
is well known [15,17,19,55], our results show that there is
also a slow relaxation taking place in the ordered stripe
pattern. This relaxation entails subtle changes in the stripe
pattern. Figure 2 shows snapshots of the concentration field
ψ(r,t) and the corresponding orientation field θ (r,t) at a
late stage of the evolution. The stripes formed by ψ(r,t)
are visibly distorted by the noise, with neighboring stripes
showing similar deviations. This is more fully revealed by
the orientation field θ (r,t), where elongated domains appear
perpendicular to the stripes [56]. Below, we will relate these
structures to growing spatial correlations in θ (r,t). Note that
the orientation field of the block-copolymer stripe pattern
measured in Ref. [57] is very similar to the one depicted in
Fig. 2(b).

B. Fluctuations of ordered stripes

We will now analyze the fluctuation dynamics of the
ordered stripe pattern by computing the two-time correlation
functions of the concentration field and the orientation field.
The concentration autocorrelation function is defined by
Cψ (t,tw) ≡ 〈ψ(r,t)ψ(r,tw)〉r,ξ , where tw � t is the waiting
time and 〈·〉r,ξ represents averaging over the spatial locations r
and independent noise realizations ξ , respectively. The spatial
average 〈ψ(r,t)〉r vanishes at all times. The orientation corre-

FIG. 2. (Color online) Orientation fluctuations within the or-
dered stripe pattern at late times. (a) Concentration profile ψ(r,t =
5.2 × 105) for η/ηc = 1

3 . (b) The corresponding orientation field
θ (r,t = 5.2 × 105). The centers of stripes forming an orientational
domain extending perpendicularly to the stripes are marked in (a)
and (b). The snapshots are sections 200 × 200 in size of a system
with L = 517. The further temporal evolutions of these patterns
are shown in the videos S1 and S2, respectively (see Supplemental
Material [56]).

lation function is given by Cθ (r,r′,t,t ′) ≡ 〈e2i[θ(r,t)−θ(r′,t ′)]〉ξ −
〈e2iθ(r,t)〉ξ 〈e−2iθ(r′,t ′)〉ξ , taking into account the nematic sym-
metry of the stripe orientation. We will use two derived quanti-
ties, the autocorrelation function Cθ (t,tw) ≡ Re〈Cθ (r,r,t,tw)〉r

and the spatial correlation function Cθ (r,t) ≡ Re〈Cθ (r′,r′ +
r,t,t)〉r′ . The data shown here have been averaged
over 40 independent simulation runs for η < ηc and
5 runs for η > ηc.

First we plot the autocorrelation functions as functions
of the time difference t − tw to check for time-translation
invariance and thus for stationarity in the dynamics (Fig. 3).
The concentration autocorrelation function Cψ (t,tw) decays
very slowly for systems in the ordered stripe phase [Fig. 3(a)],
with only a slight dependence on tw for large differences t − tw.
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FIG. 3. (Color online) Dependence of relaxations on waiting time tw and noise strength η. The (a),(b) concentration autocorrelation function
Cψ (t,tw) is compared to the (c),(d) orientation autocorrelation function Cθ (t,tw). Both functions are plotted as a function of the time difference
t − tw for different waiting times tw, with tw = 5 × 102, 103, 2.5 × 103, 5 × 103 and 104 (from dark to bright). Data for the two different noise
strengths below and above ηc are shown as indicated. Cψ (t,tw) exhibits a very slow decay and no dependence on the waiting time (a). In
contrast, Cθ (t,tw) decreases more slowly for longer waiting times (c). Both functions decay exponentially for η > ηc (b), (d). The insets show
cropped snapshots (size 70 × 70) of the concentration field ψ(r,t) and the orientation field θ (r,t) for t = 104, respectively, demonstrating the
absence of long-range order for η > ηc.

For η/ηc = 5/3, Cψ (t,tw) decreases much faster, namely,
exponentially with t − tw, and it is independent of the waiting
time [Fig. 3(b)]. In contrast, the orientation autocorrelation
function Cθ (t,tw) decays approximately as a power law of
t − tw for systems in the ordered state [Fig. 3(c)], and there
is a pronounced dependence on tw. The longer the waiting
time tw, the slower the relaxation becomes. Conversely, for
η > ηc, we observe an exponential decay in Cθ (t,tw), and no
dependence on the waiting time is discernible [Fig. 3(d)]. From
these results, we conclude that for η > ηc, the system is in a
stationary state even on short time scales, as evidenced by the
correlation functions depending only on the time difference,
t − tw. For η < ηc, the stripe system exhibits a slow dynamics
with clear indications of aging behavior, which we will analyze
below.

C. Scaling of orientation correlations

A common scaling form for the two-time correlation
functions C(t,tw), referred to as simple aging [58], is
given by

C(t,tw) ∼ t−b
w f (t/tw), (3)

where f (t/tw) is a scaling function and b is a non-negative
exponent [14,59,60]. To check for the scaling form given by
Eq. (3), we plot Cθ (t,tw) as a function of tw while keeping
the ratio t/tw = 3/2 constant. Figure 4(a) shows the resulting
plots for the noise strengths η/ηc = 1

30 , 1
3 , and 2

3 , ranging
from very small noise strengths to values close to ηc. For
tw � 1000, Cθ (t,tw) exhibits a power-law behavior in tw.
Varying the noise strength causes a change in the magnitudes,
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FIG. 4. (Color online) Scaling form of the orientation autocor-
relation function. (a) Cθ (t,tw) as a function of tw for a constant
ratio t/tw = 3/2 and different noise strengths. The straight red line
represents a power law. (b) The rescaled orientation correlation
function Cθ (t,tw)tb

w plotted vs (t − tw)/tw. The red line is the fit
function f2(x) (see text). The waiting time tw ∈ [103,2 × 104].

but only slightly affects the exponent. The least-squares fitting
of the data yields the values b = 0.24, 0.28, and 0.33 for
the noise strengths η/ηc = 1

30 , 1
3 , and 2

3 , respectively. We
now obtain the scaling function fθ (t/tw) by computing the
rescaled correlation function Cθ (t,tw)tbw, which we plot as a
function of (t − tw)/tw [Fig. 4(b)]. For each of the values
for η, we find a collapse in the data, thereby confirming the
scaling relation given in Eq. (3). Regarding the form of the
scaling function fθ (t/tw) describing the orientation correlation
function, we consider two candidates: a stretched exponential,
f1(x) ∝ exp[−α1(x − 1)β1 ], and a product of power laws,

f2(x) ∝ x−α2 (x − 1)−β2 . Both functions f1(x) (with α1 = 3.4,
β1 = 0.22) and f2(x) (with α2 = 0.89, β2 = 0.34) fit the data
for η/ηc = 1

30 equally well in the numerically accessible range
[Fig. 4(b)]. However, only f2(x) has a diverging average
relaxation time and also exhibits the expected power-law
behavior as x → ∞ [14,58]. We note that the data for η/ηc =
1
3 and 2

3 can also be fitted with both f1(x) and f2(x), with
similar fit parameters as for η/ηc = 1

30 . The scaling form given
by Eq. (3) with b > 0 is usually associated with the dynamics
at a critical point [14,59]. In our case, however, the scaling
relation holds for a wide range of noise strengths, in particular
for η � ηc. Therefore, the behavior of the correlation functions
is not related to the ODT, but instead is an intrinsic property
of the ordered stripe phase.

Another aspect of critical systems in equilibrium is the
presence of spatial correlations at all length scales. Starting
from an ordered state, this implies a growing length scale.
In Fig. 5(a), we plot cuts through the spatial correlation
function Cθ (r,t) ≡ Cθ (r⊥,r‖,t) perpendicular to the stripe
pattern. For short and intermediate times, the correlation
function is short range and can be fitted with an exponential
∝ exp(−r⊥/ξθ ). The resulting orientational correlation length
ξθ (t) is plotted in Fig. 5(b), showing a time dependence
ξθ ∝ t

1
z , with the dynamic exponent z = 2 independent of the

noise strength. This value is found in many nonconserved
phase ordering systems [13], especially the two-dimensional
(2D) XY model [61]. The nature of orientation correlations
changes from being exponential at earlier times t � 104

to a power-law behavior Cθ (r⊥,t) ∝ r−c
⊥ for times t � 105

[Fig. 5(c)]. The exponent c depends on the noise strength,
with c ≈ 0.3 for η/ηc = 1

30 and c ≈ 0.5 for a larger noise
strength, η/ηc = 1

3 . The values of c we observe at t = 5 × 105

might not be those of the infinite time limit, as there is still
a slow relaxation in progress at the longest times considered
in our study. In contrast, spatial correlations are short range
in the direction parallel to the stripe pattern and exhibit a fast
decay within a distance r‖ ≈ λ [Fig. 5(d)]. Their overall shape
shows only a weak dependence on time. These findings of
increasing orientation correlations perpendicular to the stripes
are in agreement with the elongated orientational domains
visible in Fig. 2(b).

IV. DISCUSSION

To elucidate the mechanism leading to a slow dynamics
in the stripe system, we now compare our results to other
nonequilibrium systems. A rugged free-energy landscape has
been identified in Eq. (2) for d = 3 [20] and d = 2 [62], leading
to a glass transition of the stripe system. These results could,
in principle, provide an explanation for the aging effects we
observe. We address this question by performing quenches to
η = 0 of systems which have evolved over a time tw at finite
η, which causes the systems to perform a gradient descent
towards the nearest minimum of the free energy F[ψ] [29].
The presence of many local minima should manifest itself as
an arrest of the dynamics some time after the quench, in a state
referred to as an inherent structure [63] in the language of
molecular glass formers. However, we find that for quenches
from η < ηc to η = 0, the system always approaches a perfect

052101-5



CHRISTIAN RIESCH, GÜNTER RADONS, AND ROBERT MAGERLE PHYSICAL REVIEW E 90, 052101 (2014)

FIG. 5. (Color online) Growth of spatial orientation correlations at early and late times. (a) Spatial orientation correlation function
perpendicular to the stripes at early times t = 5 × 101, 5 × 102, and 5 × 103 as well as for t = 5 × 105 (bottom to top). An exponential
function is plotted as a guide to the eye. (b) Orientational correlation length ξθ (t). The red line represents a power law with an
exponent 1

2 . (c) Cθ (r⊥,r‖ = 0,t) at late times t = 5 × 105, 105, 2 × 104, and 104 (η/ηc = 1
3 , top to bottom). For η/ηc = 1

30 , data for
t = 5 × 105, 105, 2 × 104, 104, 5 × 103, 5 × 102, and t = 5 × 101 are shown. The straight red lines correspond to power laws with the
indicated exponents. (d) Spatial orientation correlation function parallel to the stripes at t = 5 × 105. The arrows indicate the corresponding
ordinate.

pattern of parallel stripes, with the same wave number as that
of the initial condition. The dynamics after the quench is slow,
which is manifest in the autocorrelation function C

Q
θ (t,tw),

which decays with a power law in t − tw, characterized by
the exponent bQ [Fig. 6(a)]. These findings exclude a complex
free-energy landscape as the cause for aging. The emergence
of the many metastable states found for Eq. (2) in Ref. [20]
seems to be related to the presence of topological defects [64].
Yet it has been recognized that aging can also occur in partially
flat energy landscapes [12,65].

Stripe-forming systems are often compared to 2D smectic
systems [66], since they possess orientational and translational
degrees of freedom. Toner and Nelson [67] found that 2D
smectics are described by an effective nematic free energy
due to a finite density of dislocations. At long wavelengths,

the nematic model becomes isotropic and equivalent to
the 2D XY model [68,69]. Although we study an ordered
(and therefore anisotropic) stripe-forming system without
topological defects, we nevertheless observe a number of
similarities with the XY model. The latter is critical for the
whole range of temperatures 0 < T < TKT, where TKT is
the Kosterlitz-Thouless transition temperature [69], and the
autocorrelation function after a quench from ordered initial
conditions shows aging with the same form we find for Cθ (t,tw)
[Eq. (3)] [70], but with a different scaling function. Both
systems exhibit a growing length scale with the dynamic
exponent z = 2 [61], which, however, is confined to the r⊥
direction for the stripe system [Fig. 5(b)]. Similarly, the spatial
correlation function decays as a power law of r⊥ at late times,
whereas the XY model shows isotropic power-law correlations
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FIG. 6. (Color online) Orientation correlations after a quench to
η = 0. Stripe patterns which had previously evolved at a finite noise
strength η for a time tw = 5 × 105 were quenched to η = 0. (a) The
orientation autocorrelation function C

Q
θ (t,tw) is plotted on a double

logarithmic scale as a function of the time t − tw after the quench
for different noise strengths η. The red lines are power laws fitted
for 102 � t − tw � 103, with the resulting exponents growing from
0.18 for η/ηc = 1

150 to 0.33 for η/ηc = 2
3 . (b) Dependence of the

exponents b (×), bQ (◦), and c (+), obtained from temporal and
spatial correlation functions, on the noise strength. For comparison,
the red line represents a linear dependence on η. For bQ and c, the
error bars represent the standard deviation over 40 realizations of the
system. The exponent c has been obtained from a fit to the sample
average [Fig. 4(a)].

in equilibrium [69]. The distribution function of the order
parameter of the XY model has a form characteristic for critical
systems for 0 < T < TKT [71], while we see asymptotic
convergence to this distribution only for the noise strength
η approaching zero [26]. Finally, quenching the XY model
from T < TKT to zero temperature results in a slow relaxation,
with a power-law decay of the autocorrelation function [72],
similar to our findings [Fig. 6(a)]. In the XY model, the quench
dynamics, the spatial correlations, as well as the decay of
the autocorrelation function show power-law behavior with
multiples of a single exponent, which depends linearly on the
temperature. In the stripe-forming system, we also observe
power-law behavior, but the exponents depend nonlinearly
on the noise strength η [Fig. 6(b)] and are larger than in
the XY model [73,74]. Furthermore, while the exponents
bQ and c seem to be related by a constant factor of
approximately 5/3, the exponent b varies differently with
η. These observations imply that the stripe-forming system
belongs to a different universality class than the 2D XY

model.
Preliminary simulation results [26] show that stripes de-

scribed by the Swift-Hohenberg equation [27], 2D hexagonal
and 3D lamellae-forming systems also exhibit aging dynamics,
indicating that this might also be a property of other modulated
phases [23]. Our results could be experimentally tested in
systems such as thin films of block copolymers, where the
dynamics of stripe patterns can be imaged [16,75,76] and
similar orientation patterns as those shown in Fig. 2(b) have
been observed [57]. Another candidate is Rayleigh-Bénard
convection, where some effects of thermal noise have already
been demonstrated [77].

V. CONCLUSION

In summary, we report on aging behavior in an ordered
stripe system, caused by small angle orientation fluctuations.
This is an intrinsic mechanism for the disordering of a
prototype of a modulated phase without topological defects.
For a wide range of noise strengths, the system exhibits a
nonequilibrium relaxation and shows signs of criticality, as
evidenced by the spatiotemporal correlations of the local stripe
orientation. Our discovery of aging raises the question of
whether stripe phases can reach equilibrium and how they
might do so.
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CHRISTIAN RIESCH, GÜNTER RADONS, AND ROBERT MAGERLE PHYSICAL REVIEW E 90, 052101 (2014)

[7] L. Cugliandolo, in Slow Relaxations and Nonequilibrium Dy-
namics in Condensed Matter, Les Houches, Vol. 77, edited
by J.-L. Barrat, M. Feigelman, J. Kurchan, and J. Dalibard
(Springer, Berlin, 2003).

[8] P. G. Debenedetti and F. H. Stillinger, Nature (London) 410, 259
(2001).

[9] L. Berthier and G. Biroli, Rev. Mod. Phys. 83, 587 (2011).
[10] A. P. Young, Spin Glasses and Random Fields (World Scientific,

Singapore, 1998).
[11] K. Binder and W. Kob, Glassy Materials and Disordered Solids

(World Scientific, Hackensack, NJ, 2005).
[12] L. F. Cugliandolo, J. Kurchan, and G. Parisi, J. Phys. I (France)

4, 1641 (1994).
[13] A. J. Bray, Adv. Phys. 43, 357 (1994).
[14] M. Zannetti, in Kinetics of Phase Transitions, edited by S. Puri

and V. K. Wadhawan (CRC, Boca Raton, FL, 2009).
[15] J. J. Christensen and A. J. Bray, Phys. Rev. E 58, 5364 (1998).
[16] C. Harrison, D. H. Adamson, Z. Cheng, J. M. Sebastian,

S. Sethuraman, D. A. Huse, R. A. Register, and P. M.
Chaikin, Science 290, 1558 (2000); C. Harrison, Z. Cheng, S.
Sethuraman, D. A. Huse, P. M. Chaikin, D. A. Vega, J. M.
Sebastian, R. A. Register, and D. H. Adamson, Phys. Rev. E 66,
011706 (2002).

[17] H. Qian and G. F. Mazenko, Phys. Rev. E 67, 036102 (2003).
[18] H. R. Schober, E. Allroth, K. Schroeder, and H. Müller-

Krumbhaar, Phys. Rev. A 33, 567 (1986).
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