Energy-entropy-consistent time integration of nonlinear thermo-viscoelastic continua

Melanie Krüger1, \textbf{Michael Groß} & Peter Betsch2

Professorship of Applied Mechanics and Dynamics
Technische Universität Chemnitz

July 24, 2014

1Chair of Computational Mechanics
University of Siegen

2Institute of Mechanics
Karlsruhe Institute of Technology

WCCM 2014 – COMPUTATIONAL DYNAMICS OF STRUCTURES WITH LARGE DEFORMATIONS

Acknowledgments: This research is provided by DFG grant GR 3297/2-1
Energy-entropy-consistent time integration of nonlinear thermo-viscoelastic continua

Melanie Krüger¹, Michael Groß & Peter Betsch²

Introduction
Outline & overview
Problem definition

Theoretical studies
Strong forms & balances
Weak forms & balance laws
Boundary conditions
Time discrete weak forms
Time discrete operators
Time discrete balance laws

Numerical studies
Fully closed system
Fully open system
Thermally loaded system
Mechanically loaded system

Conclusions

Contents of the presentation

Outline

- Constitutive laws
- Motions of continua
- Overview
- Outline
- Title

- Balance of linear momentum
- Balance of entropy

- Strong forms
- Weak forms
- Boundary conditions
- Time discrete weak forms
- Time discrete operators

- Balance of total energy
- Balance of Lyapunov function

- Fully closed system
- Fully open system
- Thermally loaded syst.
- Mechanically loaded syst.

- Summary & outlook

Goto strong forms
Goto weak forms
Goto balance laws
Goto boundary conditions
Goto time discrete weak forms
Goto time discrete balance laws
Goto numerical examples
Overview of structure-preserving time integrators

1 Stuart & Humphries [1998], 2 Hairer et al. [2006], 3 Gonzalez [1996], 4 Armero & Romero [2001], 5 Marsden & West [2001], 6 Romero [2010], 7 Betsch & Steinmann [2000], 8 Mohr et al. [2008], 9 Bauchau & Bottasso [1999], 10 Ober-Blöbaum & Saake [2013]

Characteristics

1. Preserve physical structures of (constraints on) solution spaces of time evolution equations (ODE or PDE or DAE)

2. Examples: Geometric constraints, conservation laws (e.g. energy or linear and angular momentum), balance laws (e.g. entropy, Lyapunov function).

Finite difference methods in time

1. Symplectic methods

2. Energy-momentum time stepping schemes

3. Energy dissipative schemes

4. Variational integrators (VI)

5. Energy-entropy consistent (TC) integrators for thermoelastic closed systems

Finite element methods in time

1. Higher-order accurate symplectic methods

2. GALERKIN-based energy-momentum methods

3. GALERKIN-based energy dissipative methods

4. GALERKIN-based variational integrators (GVI)
Energy-entropy-consistent time integration of nonlinear thermo-viscoelastic continua

Melanie Krüger¹, Michael Groß & Peter Betsch²

Introduction
Outline & overview
Problem definition
Theoretical studies
Strong forms & balances
Weak forms & balance laws
Boundary conditions
Time discrete weak forms
Time discrete operators
Time discrete balance laws
Numerical studies
Fully closed system
Fully open system
Thermally loaded system
Mechanically loaded system
Conclusions

Motion of a single isotropic continuum

\[
\begin{align*}
T & = F_i^T F_i \\
N & = \nabla \varphi \\
Q & = B_0 \psi \\
\rho & = J \rho_c \circ \varphi \\
\rho_c & = J \rho_0 \circ \varphi \\
F_i & = \nabla \varphi \\
C & = F_i^T F_i \\
\rho & = J \rho_c \circ \varphi \\
\Theta & = \theta \circ \varphi \\
P & = J (\rho_t v) \circ \varphi \\
\Theta & = \theta \circ \varphi
\end{align*}
\]

State functionals

1. **Total energy, total entropy & Lyapunov function**
 \[
 H = K + E \\
 S = \int_{B_0} s \, dV \\
 V = H - \Theta_\infty S
 \]

2. **Kinetic energy & internal energy**
 \[
 K = \int_{B_0} k(p) \, dV = \int_{B_0} \frac{1}{2} \rho \cdot p \cdot dV \\
 E = \int_{B_0} e(C, s, C_i) \, dV
 \]
Constitutive laws of the considered continuum

Material motion and heat conduction

1. **First Piola-Kirchhoff stress tensor**

\[P = 2 F \frac{\delta E}{\delta C} \quad e = e^{\text{ ela}}(C) + e^{\text{ the}}(C, s) + e^{\text{ vis}}(C, C_i) \]

2. **Fourier’s law of isotropic heat conduction**

\[Q = -\kappa J C^{-1} \nabla \Theta \]

Dissipative behaviour

1. **Total dissipation**

\[D^{\text{tot}} = D^{\text{cdu}} + D^{\text{vis}} = -\frac{1}{\Theta} Q \cdot \nabla \Theta - \frac{\delta E}{\delta C_i} : \frac{\partial C_i}{\partial t} \geq 0 \]

2. **Viscous evolution equation**

\[\frac{\partial C_i}{\partial t} = -\tilde{V}^{-1}(C_i) : \frac{\delta E}{\delta C_i} \quad \tilde{V}^{-1}(C_i) = C_i V^{-1} C_i \]

\[V^{-1} = \frac{1}{2 V^{\text{dev}}} I^{\text{dev}^T} + \frac{1}{n_{\text{dim}}} V^{\text{vol}} I^{\text{vol}} \]
Equations of motion

1. Balance of total linear momentum

\[\int_{\mathcal{B}_0} \frac{\partial p}{\partial t} \, dV = \int_{\mathcal{B}_0} B \, dV + \int_{\partial \mathcal{B}_0} T \, dA \quad \text{with} \quad T = P N \]

2. Equations of motion

\[\frac{\partial p}{\partial t} = \text{Div} P + B \]
\[\frac{\partial \varphi}{\partial t} = 1 \rho \frac{p}{p} = \frac{\delta H}{\delta p} \]

Heat conduction equations

1. Balance of total entropy

\[\int_{\mathcal{B}_0} \frac{D^{\text{tot}}}{\Theta} \, dV = \int_{\mathcal{B}_0} \left[\frac{\partial s}{\partial t} - \frac{R}{\Theta} \right] dV + \int_{\partial \mathcal{B}_0} \frac{1}{\Theta} Q \cdot N \, dA \geq 0 \]

2. Heat conduction equations

\[\frac{\partial s}{\partial t} = \frac{1}{\Theta} \left[D^{\text{vis}} + R - \text{Div} Q \right] \]
\[\Theta = \frac{\partial e}{\partial s} \equiv \frac{\delta H}{\delta s} \]
Strong forms and the energy balances

Technische Mechanik/Dynamik

Energy-entropy-consistent time integration of nonlinear thermo-viscoelastic continua

Melanie Krüger¹, Michael Groß & Peter Betsch²

Introduction
Outline & overview
Problem definition
Theoretical studies
Strong forms & balances
Weak forms & balance laws
Boundary conditions
Time discrete weak forms
Time discrete operators
Time discrete balance laws
Numerical studies
Fully closed system
Fully open system
Thermally loaded system
Mechanically loaded system
Conclusions

Balance of total energy \[\frac{\partial H}{\partial t} = P_{\text{mec}} + P_{\text{the}} \]

1. Balance of mechanical energy
\[
\int_{B_0} \left[\frac{\delta H}{\delta p} \cdot \frac{\partial p}{\partial t} + \frac{\delta H}{\delta F} \cdot \frac{\partial F}{\partial t} \right] \, dV = \int_{B_0} \frac{\partial \varphi}{\partial t} \cdot B \, dV + \int_{\partial B_0} \frac{\partial \varphi}{\partial t} \cdot T \, dA
\]

2. Balance of thermal energy
\[
\int_{B_0} \left[\frac{\delta H}{\delta s} \cdot \frac{\partial s}{\partial t} + \frac{\delta H}{\delta C_i} \cdot \frac{\partial C_i}{\partial t} \right] \, dV = \int_{B_0} R \, dV - \int_{\partial B_0} Q \cdot N \, dA
\]

Balance of Lyapunov function \[V = H - \Theta_\infty S \]

\[
\frac{\partial V}{\partial t} = -\int_{B_0} \frac{\Theta_\infty}{\Theta} D^{\text{tot}} \, dV + \int_{B_0} \frac{\partial \varphi}{\partial t} \cdot B \, dV + \int_{\partial B_0} \frac{\partial \varphi}{\partial t} \cdot T \, dA
\]
\[
+ \int_{B_0} \frac{\Theta - \Theta_\infty}{\Theta} R \, dV - \int_{\partial B_0} \frac{\Theta - \Theta_\infty}{\Theta} Q \cdot N \, dA \quad (\leq 0)
\]
Weak forms derived from the strong forms

Weak equations of motion (integration by parts)

\[\int_{B_0} \left[\delta \varphi \cdot \frac{\partial \mathbf{p}}{\partial t} + \nabla (\delta \varphi) : \frac{\partial H}{\partial \mathbf{F}} \right] \mathrm{d}V = \int_{B_0} \delta \varphi \cdot \mathbf{B} \mathrm{d}V + \int_{\partial B_0} \delta \varphi \cdot \mathbf{T} \mathrm{d}A \]

\[\int_{B_0} \delta \mathbf{p} \cdot \left[\frac{\partial \varphi}{\partial t} - \frac{\partial H}{\partial \mathbf{p}} \right] \mathrm{d}V = 0 \]

Weak heat conduction equations

\[- \int_{B_0} \frac{\delta \Theta}{\Theta} \text{Div} \mathbf{Q} \mathrm{d}V = \int_{B_0} \nabla \left(\frac{\delta \Theta}{\Theta} \right) \cdot \mathbf{Q} \mathrm{d}V - \int_{\partial B_0} \frac{\delta \Theta}{\Theta} \mathbf{Q} \cdot \mathbf{N} \mathrm{d}A \]

Integration by parts

\[\int_{B_0} \left[\delta \Theta \frac{\partial s}{\partial t} + \frac{\delta \Theta}{\Theta} \frac{\partial H}{\partial \mathbf{C}_i} : \frac{\partial \mathbf{C}_i}{\partial t} \right] \mathrm{d}V = \int_{B_0} \left[\frac{\delta \Theta}{\Theta} \mathbf{R} + \nabla \left(\frac{\delta \Theta}{\Theta} \right) \cdot \mathbf{Q} \right] \mathrm{d}V - \int_{\partial B_0} \frac{\delta \Theta}{\Theta} \mathbf{Q} \cdot \mathbf{N} \mathrm{d}A \]

\[\int_{B_0} \delta s \left[\Theta - \frac{\delta H}{\delta s} \right] \mathrm{d}V = 0 \]
Weak forms fulfill all balance laws (I)

Balance of total linear momentum

Choose \(\delta \varphi(X, t) = c = \text{const.} \)

\[
c \cdot \left[\int_{B_0} \left(\frac{\partial p}{\partial t} - B \right) \, dV - \int_{\partial B_0} T \, dA \right] = 0
\]

Balance of linear momentum

Balance of total entropy

Choose \(\delta \Theta(X, t) = \Theta_\infty = \text{const.} \)

\[
\Theta_\infty \left[\int_{B_0} \left(\frac{\partial s}{\partial t} - \frac{D^{\text{vis}}}{\Theta} + \frac{R}{\Theta} - \nabla \left(\frac{1}{\Theta} \right) \cdot Q \right) \, dV + \int_{\partial B_0} \frac{1}{\Theta} Q \cdot N \, dA \right] = 0
\]

Entropy inequality principle with \(D^{\text{int}} \geq 0 \)

Balance of mechanical energy

Choose \(\delta \varphi(X, t) = \frac{\partial \varphi(X,t)}{\partial t} \) and \(\delta p(X, t) = \frac{\partial p(X,t)}{\partial t} \)

\[
\int_{B_0} \left[\frac{\delta H}{\delta p} \cdot \frac{\partial p}{\partial t} + \frac{\delta H}{\delta F} : \frac{\partial F}{\partial t} \right] \, dV = \int_{B_0} \frac{\partial \varphi}{\partial t} \cdot B \, dV + \int_{\partial B_0} \frac{\partial \varphi}{\partial t} \cdot T \, dA
\]

Balance of mechanical energy
Weak forms fulfill all balance laws (II)

Balance of thermal energy

Choose \(\delta \Theta(X, t) = \Theta(X, t) \) and \(\delta s(X, t) = \frac{\partial s(X, t)}{\partial t} \)

\[
\int_{B_0} \left[\frac{\delta H}{\delta s} \frac{\partial s}{\partial t} + \frac{\delta H}{\delta C_i} : \frac{\partial C_i}{\partial t} \right] dV = \int_{B_0} p^{\text{ent}} dV - \int_{\partial B_0} Q \cdot N dA
\]

Balance of thermal energy

Balance of total energy

Add balance of mechanical and thermal energy

\[
\frac{\partial H}{\partial t} = \int_{B_0} \left[\frac{\partial \varphi}{\partial t} \cdot B + R \right] dV + \int_{\partial B_0} \left[\frac{\partial \varphi}{\partial t} \cdot T - Q \cdot N \right] dA
\]

Balance of total energy

Balance of Lyapunov function

1. Choose \(\delta \Theta(X, t) = \Theta(X, t) - \Theta_\infty \), \(\delta s(X, t) = \frac{\partial s(X, t)}{\partial t} \) and add the balance of mechanical energy (without entropy and total energy consistency possible, cp. ehG method).

or 2. \(\frac{\partial V}{\partial t} = \frac{\partial H}{\partial t} - \Theta_\infty \int_{B_0} \frac{\partial s}{\partial t} dV \)
Boundary conditions in the weak forms

Mechanical boundary

\[\int_{\partial B_0} \delta \varphi \cdot \mathbf{T} \, dA = \int_{\partial \varphi B_0} \delta \varphi \cdot \mathbf{T} \, dA + \int_{\partial T B_0} \delta \varphi \cdot \mathbf{T}(t) \, dA \]

Thermal boundary (with LAGRANGE multiplier technique)

\[\int_{\partial B_0} \frac{\delta \Theta}{\Theta} \mathbf{Q} \cdot \mathbf{N} \, dA = \int_{\partial \Theta B_0} \delta \Theta \lambda_{\Theta} \, dA - \int_{\partial \mathcal{Q} B_0} \frac{\delta \Theta}{\Theta} \mathbf{Q}(t) \, dA \]

with

\[\int_{\partial \Theta B_0} \delta \lambda_{\Theta} [\Theta - \Theta_\infty] \, dA = 0 \quad \lambda_{\Theta} : \text{LAGRANGE multiplier (outward normal entropy flux)} \]

Boundary conditions

- Mechanical boundaries
- Thermal boundaries

Mechanical boundary

- \(\partial_T B_0 \)
- \(\mathbf{T}(t) \)

Thermal boundary

- \(\partial_Q B_0 \)
- \(\mathbf{Q}(t) \)

Boundary conditions in the weak forms

Equations of motion

\[
\int_{B_0} \delta p_{n+1} \cdot \left[\frac{\Delta \varphi}{\Delta t} - \frac{\Delta P H}{\Delta p} \right] \, dV = 0
\]

\[
\int_{B_0} \left[\delta \varphi_{n+1} \cdot \frac{\Delta p}{\Delta t} + \nabla (\delta \varphi_{n+1}) : \frac{\Delta P H}{\Delta F} \right] \, dV = \int_{B_0} \delta \varphi_{n+1} \cdot B_{\frac{1}{2}} \, dV + \int_{\partial T B_0} \delta \varphi_{n+1} \cdot T_{\frac{1}{2}} \, dA
\]

Heat conduction equations

\[
\int_{B_0} \delta s_{n+1} \cdot \left[\Theta_{n+1} - \frac{\Delta P H}{\Delta s} \right] \, dV = 0
\]

\[
\int_{B_0} \left[\delta \Theta_{n+1} \frac{\Delta s}{\Delta t} + \frac{\delta \Theta_{n+1}}{\Theta_{n+1}} \frac{\Delta P H}{\Delta C_i} : \frac{\Delta C_i}{\Delta t} \right] \, dV = \int_{B_0} \left[\nabla \left(\frac{\delta \Theta_{n+1}}{\Theta_{n+1}} \right) \cdot Q_{\frac{1}{2}} + \frac{\delta \Theta_{n+1}}{\Theta_{n+1}} R_{\frac{1}{2}} \right] \, dV
\]

\[+ \int_{\partial \Theta B_0} \delta \Theta_{n+1} \lambda_{n+1} \, dA + \int_{\partial \Theta B_0} \frac{\delta \Theta_{n+1}}{\Theta_{n+1}} \bar{Q}_{\frac{1}{2}} \, dA
\]

Local and boundary time evolutions

1. Viscous evolution

\[
\frac{\Delta C_i}{\Delta t} + \bar{V}^{-1} (C_{i,n+\frac{1}{2}}) : \frac{\Delta P H}{\Delta C_i} = 0
\]

2. Boundary condition

\[
\int_{\partial \Theta B_0} \delta \lambda_{n+1} [\Theta_{n+1} - \Theta_{\infty}] \, dA = 0
\]
Time discrete operators (2^{nd} order accurate)

Single-variable function discrete derivative of $f(z)$

\[
\frac{\Delta f}{\Delta z} = \frac{\partial f(z_{n+\frac{1}{2}})}{\partial z} + \frac{f(z_{n+1}) - f(z_n) - \frac{\partial f(z_{n+\frac{1}{2}})}{\partial z} \circ [z_{n+1} - z_n]}{[z_{n+1} - z_n] \circ [z_{n+1} - z_n]} (z_{n+1} - z_n)
\]

Special case 1: Scalar-valued z

\[
\frac{\Delta f}{\Delta t} = \frac{f(z_{n+1}) - f(z_n)}{t_{n+1} - t_n}
\]

Special case 2: Quadratic f

\[
\frac{\Delta k}{\Delta p} = \frac{\partial k(p_{n+\frac{1}{2}})}{\partial p} \equiv \frac{1}{\rho} p_{n+\frac{1}{2}}
\]

Multi-variable functional (partitioned) discrete derivatives

\[
\frac{\Delta^P H}{\Delta p} = \frac{\Delta k}{\Delta p} \quad \text{with} \quad k(p) \quad \text{and} \quad e(C, s, C_i)
\]

\[
\frac{\Delta^P H}{\Delta F} = F_{n+\frac{1}{2}} \begin{bmatrix}
\Delta e \\ \Delta C
\end{bmatrix}_{s_n, C_{in}} + \begin{bmatrix}
\Delta e \\ \Delta C
\end{bmatrix}_{s_{n+1}, C_{in+1}}
\]

\[
\frac{\Delta^P H}{\Delta s} = \frac{1}{2} \begin{bmatrix}
\Delta e \\ \Delta s
\end{bmatrix}_{C_n, C_{in+1}} + \begin{bmatrix}
\Delta e \\ \Delta s
\end{bmatrix}_{C_{n+1}, C_{in}}
\]

\[
\frac{\Delta^P H}{\Delta C_i} = \frac{1}{2} \begin{bmatrix}
\Delta e \\ \Delta C_i
\end{bmatrix}_{C_n, s_n} + \begin{bmatrix}
\Delta e \\ \Delta C_i
\end{bmatrix}_{C_{n+1}, s_{n+1}}
\]
Time discrete balance laws (I)

Balance of total linear momentum

Choose \(\delta \varphi_{n+1}(X) = c = \text{const.} \)

\[
c \cdot \left[\int_{B_0} \left[\frac{\Delta p}{\Delta t} - B_{\frac{1}{2}} \right] dV - \int_{\partial T B_0} \overline{T}_{\frac{1}{2}} dA \right] = 0
\]

Time discrete balance of linear momentum

Balance of total entropy

Choose \(\delta \Theta_{n+1}(X) = \Theta_\infty = \text{const.} \)

\[
\Theta_\infty \left[\int_{B_0} \frac{\Delta s}{\Delta t} - \frac{D_{\text{tot}}^{\frac{1}{2}} + R_{\frac{1}{2}}}{\Theta_{n+1}} dV + \int_{\partial_\Theta B_0} \lambda_{n+1} dA - \int_{\partial_\Theta B_0} \frac{\bar{Q}_{\frac{1}{2}}}{\Theta_{n+1}} dA \right] = 0
\]

Time discrete entropy inequality principle with \(D_{\text{tot}}^{\frac{1}{2}} \geq 0 \)

Balance of mechanical energy

Choose \(\delta \varphi_{n+1}(X) = \frac{\Delta \varphi(X)}{\Delta t} \) and \(\delta p_{n+1}(X) = \frac{\Delta p(X)}{\Delta t} \)

\[
\frac{\Delta K}{\Delta t} + \frac{1}{2} \left[\frac{\Delta E}{\Delta t} \bigg|_{s_n, C_{in}} + \frac{\Delta E}{\Delta t} \bigg|_{s_{n+1}, C_{in+1}} \right] = \int_{B_0} \frac{\Delta \varphi}{\Delta t} \cdot B_{\frac{1}{2}} dV + \int_{\partial T B_0} \frac{\Delta \varphi}{\Delta t} \cdot \overline{T}_{\frac{1}{2}} dA
\]

Time discrete balance of mechanical energy
Balance of thermal energy

Choose \(\delta \Theta_{n+1}(X) = \Theta_{n+1}(X) - \Theta_\infty \), \(\delta s_{n+1}(X) = \frac{\Delta s(X)}{\Delta t} \) and \(\delta \lambda_{n+1}(X) = \lambda_{n+1}(X) \)

\[
\frac{1}{2} \left[\frac{\Delta E}{\Delta t} \bigg|_{C_n,C_{n+1}} + \frac{\Delta E}{\Delta t} \bigg|_{C_{n+1},C_{in}} + \frac{\Delta E}{\Delta t} \bigg|_{C_{n},s_n} + \frac{\Delta E}{\Delta t} \bigg|_{C_{n+1},s_{n+1}} \right]
= \int_{B_0} R_\frac{1}{2} \, dV - \Theta_\infty \int_{\partial_\Theta B_0} \lambda_{n+1} \, dA + \int_{\partial Q B_0} \bar{Q}_{\frac{1}{2}} \, dA
\]

Balance of total energy

Add time discrete balance of mechanical and thermal energy

\[
\frac{\Delta H}{\Delta t} = \int_{B_0} \left[\frac{\Delta \varphi}{\Delta t} \cdot B_\frac{1}{2} + R_\frac{1}{2} \right] \, dV + \int_{\partial TB_0} \frac{\Delta \varphi}{\Delta t} \cdot \bar{T}_\frac{1}{2} \, dA - \Theta_\infty \int_{\partial_\Theta B_0} \lambda_{n+1} \, dA + \int_{\partial Q B_0} \bar{Q}_{\frac{1}{2}} \, dA
\]

Balance of Lyapunov function (Lagrange multiplier will be eliminated)

1. Choose \(\delta \Theta_{n+1}(X) = \Theta_{n+1}(X) - \Theta_\infty \), \(\delta s_{n+1}(X) = \frac{\Delta s(X)}{\Delta t} \), \(\delta \lambda_{n+1}(X) = \lambda_{n+1}(X) \) and add the time discrete balance of mechanical energy (cp. ehG method)

or 2. \(\frac{\Delta V}{\Delta t} = \sqrt{\frac{\Delta H}{\Delta t}} - \Theta_\infty \int_{B_0} \frac{\Delta s}{\Delta t} \, dV \)
Free rotating insulated thermo-viscoelastic disc

Boundary conditions

- $\omega_z = 0.33 \text{ s}^{-1}$
- $\Theta_\infty = 300 \text{ K}$
- No b.c.

ETC integrator with $\Delta t = 0.02 \text{ s}$

- $t = 5 \text{ s}$
- $t = 10 \text{ s}$
- $t = 15 \text{ s}$
- $t = 20 \text{ s}$
- $t = 25 \text{ s}$
- $t = 30 \text{ s}$

Reference configuration

- $t = 0 \text{ s}$
- v_0
- v_0

Temperature distribution over time:

- 0 s to 30 s
- Temperature range: 310 K to 380 K
- Color scale: Red to Yellow
Free rotating insulated thermo-viscoelastic disc

Midpoint rule ($\Delta t = 0.1$ s)

$t = 25$ s

ETC integrator ($\Delta t = 0.1$ s)

$t = 25$ s

Introduction

Outline & overview

Problem definition

Theoretical studies

Strong forms & balances

Weak forms & balance laws

Boundary conditions

Time discrete weak forms

Time discrete operators

Time discrete balance laws

Numerical studies

Fully closed system

Fully open system

Thermally loaded system

Mechanically loaded system

Conclusions
Energy-entropy-consistent time integration of nonlinear thermo-viscoelastic continua

Melanie Krüger¹, Michael Groß & Peter Betsch²

Introduction
- Outline & overview
- Problem definition

Theoretical studies
- Strong forms & balances
- Weak forms & balance laws
- Boundary conditions
- Time discrete weak forms
- Time discrete operators
- Time discrete balance laws

Numerical studies
- Fully closed system
- Fully open system
- Thermally loaded system
- Mechanically loaded system

Conclusions
Rail-bound uninsulated thermo-viscoelastic disc

Midpoint rule (\(\Delta t = 0.14\) s)

ETC integrator (\(\Delta t = 0.14\) s)
Thermo-viscoelastic disc with heat exchange

Boundary conditions

\[\Theta_{\infty} = 300 \text{ K} \]

Load history

MPR \((\Delta t = 0.02 \text{ s})\)

ETC \((\Delta t = 0.02 \text{ s})\)

Introduction

Outline & overview

Problem definition

Theoretical studies

Strong forms & balances

Weak forms & balance laws

Boundary conditions

Time discrete weak forms

Time discrete operators

Time discrete balance laws

Numerical studies

Fully closed system

Fully open system

Thermally loaded system

Mechanically loaded system

Conclusions
Thermo-viscoelastic disc with heat exchange

Midpoint rule ($\Delta t = 0.05$ s)

ETC integrator ($\Delta t = 0.20$ s)

Introduction
Outline & overview
Problem definition
Theoretical studies
Strong forms & balances
Weak forms & balance laws
Boundary conditions
Time discrete weak forms
Time discrete operators
Time discrete balance laws
Numerical studies
Fully closed system
Fully open system
Thermally loaded system
Mechanically loaded system
Conclusions
Thermo-viscoelastic compression buffer

Boundary conditions

- Bottom supported
- Top loaded
- \(v = 0 \text{s}^{-1} \)
- \(\Theta_0 = \Theta_\infty = 300 \text{K} \)

ETC (\(\Delta t = 0.1 \text{s} \))

- \(t = 20 \text{s} \)
- \(t = 25 \text{s} \)
- \(t = 80 \text{s} \)
- \(t = 85 \text{s} \)
- \(t = 95 \text{s} \)
- \(t = 100 \text{s} \)

Load history

- Time history of load Q (W/m²)
- Time history of temperature T (N/m²)

Introduction
Outline & overview
Problem definition
Theoretical studies
Strong forms & balances
Weak forms & balance laws
Boundary conditions
Time discrete weak forms
Time discrete operators
Time discrete balance laws
Numerical studies
Fully closed system
Fully open system
Thermally loaded system
Mechanically loaded system
Conclusions
Thermo-viscoelastic compression buffer

Introduction
Outline & overview
Problem definition
Theoretical studies
Strong forms & balances
Weak forms & balance laws
Boundary conditions
Time discrete weak forms
Time discrete operators
Time discrete balance laws
Numerical studies
Fully closed system
Fully open system
Thermally loaded system
Mechanically loaded system
Conclusions

Midpoint rule

ETC integrator

Total energy balance [J] vs. time [s] for different time steps.

Total energy balance [J] vs. time [s] for different time steps.

Total energy balance [J] vs. time [s] for different time steps.

Midpoint rule

Total energy balance [J] vs. time [s] for different time steps.

ETC integrator

Total energy balance [J] vs. time [s] for different time steps.

Total energy balance [J] vs. time [s] for different time steps.

Total energy balance [J] vs. time [s] for different time steps.
Conclusions

Summary

1 Goal: The ETC integrator fulfills
 ▶ the balance of total linear/angular momentum AND total entropy
 ▶ the balance of total energy AND Lyapunov function
 also with Dirichlet and Neumann boundary conditions.

2 Algorithmic basis: A spatially weak formulation, which fulfills
 ▶ ALL balance laws for STANDARD finite element spaces

3 Algorithmic key: A time discretisation with
 ▶ time discrete differential operators which satisfy the
equation version of the fundamental theorem of calculus.

4 Benefit: A transient simulation with an improved
 ▶ numerical stability for large time steps, and
 ▶ physically consistent solutions (NO hour-glassing, NO waves)

Outlook

5 Introduction of a (mixed) variational formulation of the time evolution
 \(\rightsquigarrow \) (mixed) variational integrator \(\rightsquigarrow \) physical consistency with time adaptivity

1 Maugin & Kalpakides [2002], Bargmann [2008]
2 Zielonka [2006], Zielonka, Ortiz & Marsden [2008], Mata & Lew [2011]
3 Ibrahimbegovic, Chorfi & Gharzeddine [2001], Hartmann, Quint & Arnold [2008], Birken et al. [2010], Moore [2011], Gleim & Kuhl [2013]