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Technische Motivation, goals and strategy

Mechanik/Dynamik

Energy and Motivati

Momentum
conserving
variational based
time integration
of anisotropic
hyperelastic
continua

@ Dynamic simulations of fiber-reinforced materials in light-weight structures

Design of energy-momentum Variationally consistent design

schemes for anisotropic materials | of energy-momentum schemes

0 Higher-order approximations Q differential variational principles
nd Juliz

B (Jourdain's, Gauss's etc.)

Q Enhanced displacement gradients

i continuous assumed 'strain’
UCClicn 9 Assumed 'strain’ approximations g
A . . approximation in time
in time for matrix and fiber, bt

@ Superimposed algorithmic stress © discontinuous stress

fields for matrix and fiber approximation in time

ategy (compare Betsch & Janz [2016], Schlogl & Leyendecker [2016])
@ Formulation of a mixed variational principle for continua
@ Space and time discretization of this variational principle

© Energy-momentum schemes as discrete Euler-Lagrange equations
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Technische Continuum model for fiber-reinforced materials

Mechanik/Dynamik

Energy and Transversely isotropic material Enhanced displacement
Momentum . Simo, Armero & Taylor [1093
conserving Schréder, Neff & Balzani [2005] gradlent Q].Eg !\,’I?H(g‘r/zlmBets(ﬁ: [Tzao\gﬂ PR
variational based
time integration
of anisotropic

/“7{\ [Ho (€)% := ;[F']“ [VeNi(€)]5

hypere_lastic P, =Vxp,+H, . ; ~
CortinLs - [Ho(€))7 s 1= 575 ol alHo(€))"5175" 1",
Rajooh Ramah & L) = [Tl oo €))%
and Julian &
e : [HA©)"a = Yol [FxNr(©)a
1 =1
Matrix and fiber deformation Klinkel, Sansour & Wagner [2005]

Continuum model

@ Deformation gradient of the fiber
Fr:=a®ag=FA a= Fay Ay := a9 ® ag
Q Right Cauchy-Green tensors
Crp:=FLFp:=CrAy Cr:=C:Ay=If C:=FTF
© Second Piola-Kirchhoff stress tensor

. )
& oW 1L IE, Cp) 0IC | OW(IC, 1L, I, Cp) OW(Cr)
5=23 aIC ac ? 3Cr Ao+

i=1

Ay
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Technische Functional form of the total energy balance

Mechanik/Dynamik

ety i Total energy balance H =0
Momentum

conserving

variational based T(’U,, ’i), p) =F ﬁint(u’ ﬁ, é, éF, S, »S'F7 S, SF) aF ﬂeXt(u, h) =0

Kinetic power functional

time integration
of anisotropic
hyperelastic
continua

T('d,'b,j;)::/ [pov — p]- vdV — j)-['v—'it]dV—f—/ p-udV
By Bo Bo

nesh
and Julian
Dietzsch

Stress power functional IT™ (4, ﬂ é‘, ép, S, S8 8,5k

Iint .— %/ {[2DW(C’)+S*S]::C+[2DWF(C'F)+S’F75FIA0]:5p}dV
Bo
L S:[(Z'—C(u,if)}dv+1 S: Clu, H)dV
2 Bo 2 By
1 Sp: [CFAO—CF(u,fI)]dVJrl/ Sp: Cp(u, H)dV
2 )z, 2 Ja,
External power functional I (i, h)
next;:_/ pob-wdV— [ t-add— [ [h-(a—8)+h-(u—a)}dd
Bo 0, Bo uHBo
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Technische M ixed JOU rd ain prl nci p|e (cp. Schroder & Kuhl [2015], Klinkel & Wagner [1997], Hackl [1997])

Mechanik/Dynamik

Energy and Principle of virtual power 6.H = 0 in mixed form
Momentum

conserving I o g LA A s = = o L
variational based 5*7—(“, v, p) aF &Hmt(u, .EI-7 C, CF, S, »S'F7 S, SF) aF (S*HeXt(’U,, h) =0
time integration

of anisotropic
hyperelastic
continua

| kinetic power

6.7 := [ [pov—p]- 0, 0dV — 5*p~[v—u]dV+/iz-6*udV
nd Julian Bo Bo Bo

Dietzsch

Virtual stress power &, 11" (i, H é, ép, S,Sp: S, Sk)

5T = %/ {[2DW(E)+ 5~ 8] :6.C + [2DW(Tr) + 5r — Sp: Ao] : 8, C} av
Bo
Ve pne e _1 5.8 : [C _ C’(il,, j{)] dv + 1/ FS: [Vx(é*u) + 5*1“{] av
2 )z, 2 Ja,

1 P p z 1 =z
—= [ 6.85: [CFAO — Epla H)] AV 4= | FrpSp: [vx(a*u) +5*H] AgdV
2 )z, 2 )z,

Virtual external power 0,11 (4, h)

8, 11 :=—/ pob-zs*udV—/ o idA— {h-6,+0.h-[u—1ul}d4
Bo 8: %o DuPBo
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Technische Euler-Lagrange equations

Mechanik/Dynamik

Energy and Constitutive equations

Momentum

varistional based pov = p Vi > o 5.H=0 and H(ly) = O
=izt 2DW(C)+ S =8 Vi > o Sr = [2DWr(Cr) + Sr| Ao
s Cli, H) = C with C(to) = C(uo, H(to))
Michse Grot, Crlu, H): Ay = Cp with  Cp(to) = Cr(uo, H(ty)) : Ao
[FS+Fp(Sp:A)]N=t¢ Vt >ty on 0;%

0« =0 and u = u with u(f) = u(tp) on .%o

Equations of motion in first order form

Euler-Lagrange equations o=@ wih u(t()) — g

DIV[FS + Fp (SF 8 Ao)} + pob= p with p(to) = Py = PoYo

Time evolution characteristics

0 continuous time evolutions of u, v, p as well as H, C, Cr

Q discontinuous time evolution of the stresses S, Sz and S=0, Sp =0
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Technische Discrete variational principle (2nd-order accurate)

Mechanik/Dynamik

Energy and Discrete principle of virtual power at &, = 0.5

Momentum
conserving N-1 . . . . o _
variational based 3 SH(R (&), 9 (1), BR(ED, H(&), Cr(&1), CF, (&1), Sh(&1), ST, (€0); 85 (61), 8B, (€1)) hn =
time integration n=0
of anisotropic N-L

hyperelastic Z 6*Hd('llzn+ly Vnt1: Ppt1s H,,Cpri, CF,,H, Sn+%7 SFMA 3 §"+%, S'le ) h, =0
continua n=0 2 2
Michael Grof Galerkin approximations
h Ramesh
and Julia
e up(@) = un +a(uni —un)  VR(@) =V +a(Vapr—vn)  PR(@) =P, +a(pu - Pa)

Dietzsch
Hy(a) =H,+a(H, —H,) Cha):=Ch+a(Ch—Cr) Cp(a):=Cp,+a(Cp,, —Cr,)

Semidiscrete variational forms

72DW(6',,+%)7§"+%] :wanV:o:/Q
%

1
s 1

3

[Sk,., : Ao~ 2DWi(Cpoiy) = Br,,, | :6Ck,, AV
POV 1 *PH%] 0V dV =0= /@ [(CFW — Cp,) Ao - (FET‘,,“ + an) (Frus — FF)] 08p, AV
o

/ [m% - ”*}77’"] 0P dV = 0= / [Cusi = Cu— (FL + FL) (Fus — Fa)] 08,44V
Bo ‘n g

Discrete variation

/ Shit - [Ungr — Tnp1] dA =0 :/ Foi [sw% + (spM : AO) A(,] CSH i dV
Bo Bo
/ top1 - 0upp1dA+ / By - 0uppdA

By Jo.B ?

_ /ﬂ {% +BI,, [s"% i (spw% :AO) Ao} —pob”+%} SUnir AV
o
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Technische
Mechanik/Dynamik

Discrete Euler-Lagrange equations (2nd-order accurate)

Energy and nitial conditions
M t = ~
conserving. ulb) =uwo  pllo) =povo  v(lo) =vy  Clto) = (Vo + D) (Vuo+1)  H(to) = O
variational based .
time integration Discrete strong forms
of anisotropic

hyperelastic
continua

(compare Betsch & Janz [2016])
iy [vn + V1] = 2 (U1 — un)

Sk, + Ao=2DWr(Cr,,

p0 [vn + Vnta] =P, + Prpy

ael GroB, QDW( 71,+1)+S”+1 =8,.1
h Ramesh —

and Julian 20 'Fn+ ( n+l = n)

Dietzsch

)+~51-
(Crysy — Cr,) Ag = 21 : F1.
Discrete weak forms due to Q1E9

Cni1—Cn

1 (FFn+l - FFn)

compare Simo, Armero & Taylor [1993]

Miller & Betsch [2007]
2 Upii— U
=M [ 1t —vn] +/@ BY,, [SH% + (spw% : AO) AD} AV =H,t, s+ Hyh, s + Mb,
n n %
M::/ poNTNAV Ht::/ N'Ndv H g
Bo 8: %o

wi= / N NdV
AuPBo
Gn+% [ang1 — ap] =TV F};—%—% [Hpia — Hy)
T . —
/@UGH% [Suey+ (Si,,, + 40) Ao dV =0

— . pT
B"Jr% [Unt1 —up] =¥ F o [Vungr — Vg
TMdim
Discrete E-L-equations

Hon=Y ol 0V,
A

=1
Discrete total energy balance
7;H»l 7Tn

L L
fin,

L[5y (540 4 2 o

Up+1 — U Qp4] —
n+hq n +G"+% nt n:|dV
3

123

(CGGETS
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Technische Discrete superimposed fiber stress (2nd-order accurate)

Mechanik/Dynamik

Energy and Algorlthmlc claim for the fiber (one equation for 1 unknown)

Momentum

: . ) )
IR | |2DWe(Cr )+ S8k | Ap:[Cni1— CuldV = [Wr(CF,yy) — Wr(CR,)] dV
%o nt3 3] . B

variational based 2
time integration
of anisotropic
hyperelastic

Crpi1—Cry

continua Constrained variational problem (compare Gauss's principle in Ramm [2011])
_ 1 7= 2 _ _
nd Julian L(p, SFn+%) =3 (SFn+%) +/‘g(SFn+%) 0uL(p, SFM_%) =0
Dietzsch
Local constraint G., Betsch & Steinmann [2005]
- 1 & -
g(SF,ﬁ%) = WFn+1 - Wr, — 5 I:QDWF(CTH-%) + SFn+%:| [CFnH - CF"] =0

Discrete Euler-Lagrange equations

aL . p oL _ g _
5 " 8¢,y = 5 [Crun — Cr] =0 o = G(8r,,,) =0
)
Superimposed stress -
Discrete superimposed fiber stress Gonzalez [2000]

Sp =2 9(0)

W= [Crr—Cr]
s [CFn+1 - CFn]M "
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Technische
Mechanik/Dynamik

Energy and
Momentum
conserving
variational based
time integration
of anisotropic
hyperelastic
continua

and Julian
Dietzsch

Superimposed stress

Discrete superimposed stress tensor (2nd-order accurate)

Algorithmic claim for matrix

(one equation for 6 unknowns)

[W(Cry1) — W(C,)dV

1 - o
-/ [2DW(C,r3) + 8ury] ¢ [Coa — Ca AV =
2 ‘%D 2 2 v@ﬂ

Constrained variational problem

1
2

6*‘6(:“7 Sn+l) = 0

2

‘C(:u7 Sn+%) o= én+% s'n-%—% S STL+% én-%—% +l"g(‘~gn+%)

Local constraint

_ 1 _ _
G(8pag) i= Wasr = Wo— 5 [2DW(CW+%) ¥ sn+%] [Crsr— Co] =0

Discrete Euler-Lagrange equations

oL =

_ & 2 % aL &
88,y O3St Crey T 5lCan— G20

5 = 9Buy)=0

Armero & Zambrana-Rojas [2007]

Discrete superimposed stress tensor

& g(0)

Sn+§ =2—— AL
Cn+% [Crt1— Cp] 1 [Crpr — C Cn+%

~—1 ~—1
Cn+§ [Cri1— Ch] Cn+%
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Technische Higher-order accurate approximation

Mechanik/Dynamik

Energy and Discrete variation principle

Momentum il I

it P 3 D MR, DR, BRE: CRE), SR pos Ao, Ko, B (€:), 61(6:), TR(E:)) wi b = 0
time integration =0 =t
of anisotropic . . .
hyparclastic Galerkin-based approximations
continua Pl
uj(a) Z Mj(a vi(@) =) Mj(@) v} Ph@) = Mj(a)
nd Julian Z M;( CZ(G) = Z M;(a) C;L C’;,. (a) = Z M;(a) CF,
Dietzsch
Discrete weak assumed strain equation
/ 58P (e [%f) 5:(&:(5,.))] wdV =0 im0k

Discrete local assumed strain equation (Euler-Lagrange equation)

Unknown nodal values C7', [ =2,...

Higher-order approx

M2(&) oo Min ()
Cl = Z mh uh (&) + CT with m = : :

Ma(6) . M (€)
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Technische Higher-order accurate stress approximation

Mechanik/Dynamik

Energy and Nodal values for £ = 1 | Nodal values for

Momentum

conserving C,=Ct:= (FTL)TF;Z C,=C7:= (Fln)TFT

variational based 1[F} + F} g F} +F}
time integration C; = 3 [ . 2 - F;l:| [ - b} L F;l] + (Fg)TF;
of anisoropic Crir = Cf = (F)"F} Cuty = C} = (FR)TF}
continua ) . . 0 Sy g - - o
el oot Old superimposed stress with mixed 'strain’ approximation in time
VIiic € rob,
Ramesh ® (energy consistent, but not varia-
3Bfi'eéz“s‘§1” 5N =2 T 9(0) Cy (&) tionally consistent approximation)
= o .
Z Cr () C(&:)(Et) w G., Betsch & Steinmann [2005]

Introduction

Il
-

Variational setting Wlth
k+1

6(0) = Wi~ W, ~ 3 O AR &3l m=0 B =3, M) (7177
=1 j

New superimposed stress with uniform 'strain’ approximation in ¢
90) (A A A
(e The) O @) [CE) " w

Sp(&:) =2

M»

Higher-order approx

Numerical i with

1

OW(Cy(€); Ao, ko) =
G(0) = W, W, hi :
o Z aC (&) !
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Rotating pipe with inner taper (I) (Q1-element)

mechanik/Dynamik  (influence of reinforcing fibers; linear finite elements in time)

Energy and Pipe material Current configurations at 7'

Momentum L . . '
conserving Isotropic strain energy functions Colour indicates circumferential elongation (h,, =

variational based Wi(C™) = o [L(C™) — L(T)]
time integration + 2o [R(C™) - H(I

of anisotropic

hyperelastic
continua

e g 051510511 Sher g1 S e, g, 05151051t w01 2
o 011501 0 S O 0115055 B e 517

]
+ o [1(C™) — B(1))°
]

+ o1 [B(C™) = B(I)

11— eV (5(6%) - KO}

- : )
WHC) =T [(B(C)* + ((0) ™ -2] 201
. Pl d b SO
Di t7>Ch Yeoh [1993], Hartmann & Neff [2003], Heimes [2005] P —. i o B 0 us s i o
Anisotropic strain energy functions e daeguisae), Sj:sy.yw,nm(,v:’,m»znr 2 i chngion [ ! 25

3/2

We(C*°, Ag) = KT [((e=)* +3 (1(@=) ™ ~4]

Al-Kinani, Hartmann & Netz [2014]

b - okl
Wih(C, ) = H[IA(C)] 265+
Schréder, Wriggers & Balzani [2011] ~oo i
sing . s
a = | coso | fiber angle 6 (0.5 s
0 s 0 s 5 B X P I o
Holzapfel, Gasser & Ogden [2000] y v

G g lol, -SSLL B

nitial conditions

ué“zO 'u()“:wxXA
Numerical studies ~ P 15
W = wp e = —15 el 25

no external forces e T,HTQ% .

¥ v
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Technische
Mechanik/Dynamik

material

Energy and
Momentum

conserving Isotropic strain energy functions

variational based WE(C™) = o [1(C™) = h(D)]
time integration + 2o [1(C*) - R(D)]?

of anlsotroplc + a0 [R(C) — K(D)]®

hyperelastic oo
. + por [B(C™) — B(I)]
continua P
+ s (1= ep [ (5(C%) - L(D)]}
weo) = B (0P + e 7]

Yeoh [1993], Hartmann & Neff [2003], Heimes [2005]
Anisotropic strain energy functions

Wen(C™, Ag)

S [e=) ™ +5 (ne) ™ 4]
Al-Kinani, Hartmann & Netz [2014]

Wi(C. A) = (et

Ye +1
Schréder, Wriggers & Balzani [2011]

sing .
a = [ coso | fiberangle o€ [0, 3]
0

Holzapfel, Gasser & Ogden [2000]

nitial conditions

ufl =0 vl =wx X4
W = wp e = —1561
no external forces

Numerical studies

Rotating pipe with inner taper (II)

(Q1-element)

(influence of reinforcing fibers; linear finite elements in time)

Current configurations at T

Colour indicates circumferential elongation (h,,

i oz 100 G 0] 2 ot domine{, 13,000 B g 107 1

265 -5

X0 e 0 265 S x 05 s 0
v v



Rotating pipe with inner taper (Ill)  (Ql-element)

Technische

mechanik/Dynamik  (influence of reinforcing fibers; linear finite elements in time)

Energy and Pipe material Conservation properties

Momentum ) ) _
conserving Isotropic strain energy functions time step size h,, = 0.01 and Newton tolerance 10

variational based WE(C™) = o [R(C™) - L(D)]

s " Intra-processing
time integration + a0 [1(C™) - B(D)]* * =1
; i
o:' anlsolt:roplc + a0 [R(C) — R(D)]® £ 200 o6 5
erelastic 2 =
DEC +ior [B(C™) - B(I)] z 150] 5
continua H 3
(1= e [ 12 ((C™) — D)} £ £
o = g ] ]
W) =" [(B(C) + (o)™ 2] s 4 - 0a®
i
Yeoh [1993], Hartmann & Neff [2003], Heimes [2005] Y E e B P Y R P
Time (5 Time (s
Anisotropic strain energy functions .
2NisOtropiC strain energy Junctions Post-processing 10"
-ani iso [ isoy) 3/2 isoyy ~1/2
WG, 4) = S [(1(C%)* 43 (1(€™) T ~4] o 3 s o
3 o4 E , 2
Al-Kinani, Hartmann & Netz [2014] E 3 §
£ -1 1 13
.\ H 3 )
WiC, 4)) = B (o) e o 8
Schroder, Wriggers & Balzani [2011] 27 g R
£ 29 H 28
sing o g L&
@y = | cos¢ | fiber angle ¢ =50°
- 0 0.2 04 06 08 1 710 0.2 04 06 08 1
Holzapfel, Gasser & Ogden [2000] ‘Time [s] Time [s]
10 Post-processing
tol =
nitial conditions z = B g
A A A g L ]
uy =0 vy =wx X .
Numerical studies 3 st B 2%
— —_ _ e g
w=wper =—15¢e # K
-

no external forces

4 06 04 06
Time [s] Time (5]
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Technische

Pipe material

Isotropic strain energy functions

Energy and
Momentum
conserving

variational based WE(C™) = o [R(C™) - L(D)]
time integration + a0 [R(C™) - R(D)?
o:' anlsolt:roplc $ g0 [R(C™) — H(D)°
ypere_ astic o [B(C™) — (D)
continua
+ y; {1 —exp [~ Y2 (L(C™) - L(I))]}
W0) =" (0 + () 7]

and Julian
" Yeoh [1993], Hartmann & Neff [2003], Heimes [2005]
sch

tropic strain energy functions

W=, Aq) (L(Cc™) "2 74]

(e +3

Al-Kinani, Hartmann & Netz [2014]

it - a1
Wi (C, Ao) = +1 (e

Schréder, Wriggers & Balzani [2011]

sin ¢ o

ap = [ coso | fiberangle 6 (0.7

Holzapfel, Gasser & Ogden [2000]

nitial conditions

ufl =0 vl =wx X4
w:w061:—1561

no external forces

Numerical studies

Rotating pipe with inner taper (V)

(Q1-element)

(influence of reinforcing fibers; linear finite elements in time)

—— o

g fer gl 0

g fher ange- 10
g o ange- 20
£ foer ange- 20
e oot ange- 4
E) o nge- 01
H

hn=0.01 [s], T= 0.5 [s), p0= 0 [Nisqm), thoF= 0

) EEE
Max. circumferential displacement [m]

o 2 4 & & 1 1
Min. circumferential displacement [m]

[kg/cbrhh= 0.01 [s], T= 0.5 [s), p0= 0 [Nisqm], rhoF= 0 [kg/cbm]

Angular frequency [L/s]

e

fiber angle= 507
fiber angle= 607
fiber angle= 657
fiber angle= 709
fiber angle= 807
——— fiver angle= 851

Angular frequency [L/s]

o

hn=0.01 [s], T= 0.5 [5), p0= 0 [Nisqm), thoF= 0

5 1 15 20 2
Max. circumferential displacement [m]

o 2 4 & & 10 1
Min. circumferential displacement [m]

[kg/cbrhh= 0.01 [s], T= 0.5 [s), p0= 0 [Nisqm], thoF= 0 [kg/cbm]

b
5

Angular frequency [L/s]

—5— tsowop
fiber angle= 0

fiber angle= 107
foerange- 201
309

fiber angle= 607
— @ - fiver angle= 701
— & — fiver angle= 801

Angular frequency [L/s]

5 0 15 £
Max. longitudinal displacement [m]

BT E) = o
Min. longitudinal displacement [m]
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Technische

Rotating pipe under pressure (I) (Q1-element)

mechanik/Dynamik  (influence of internal pressure; linear finite elements in time)

Energy and Pipe material Pipe configurations at 7' = 1.0 (r, = 0.01)

Momentum
conserving Isotropic strain energy functions Colours indicate von-Mises stress and red arrows the pressure load

variational based Wi(C™) = o [H(C™) — L(T)]

time integration ¢ o [5(C=) — B (D) oS 573 430510 ) T e P Im
of anisotropic
3 + 30 [R(C) ~ KD o o
hyperelastic
+ o1 [B(C™) - B(I)]

continua
ty, {1 —exp [-Y2 (h(C™) = h(D))]}

W0) =" () + () 7]
and Julian

sch Yeoh [1993], Hartmann & Neff [2003], Heimes [2005]

Anisotropic strain energy functions _—

WG, Ag) [(1(e=)*" +3 (1(@=) ™ ~4]

Al-Kinani, Hartmann & Netz [2014]

- oot
WC, A0) = ()

Schréder, Wriggers & Balzani [2011]

sin¢.
a = | cosd | fiber angle o= 50°

Holzapfel, Gasser & Ogden [2000]

nitial conditions

&=0 v(‘?:wXXA
w=wpe =—-Te; .

Fluid pressure in the pipe

p(r) =po+ L prwdr?

0, o e

Numerical studies

2000
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Rotating pipe under pressure (II) (Q1-element)

(influence of internal pressure; linear finite elements in time)

Energy and Conservation properties

Momentum . .
conserving Isotropic strain energy functions time step size h,, = 0.01 and pressure py =

variational based WH(C™) = o [L(C™) - L(I)]
s " Intra-processi
time integration + oo [L(C™) - (D)) ad 1 T el 1
; f ) | e
of anlsotroplc + 30 [1(C™) — (D) T 3 1 3
hyperelastic o 3 £ 06 =
q + o1 [(C™) — B(I)] 3 5 09 04 £
continua ¥, 272 3 =
+71(lfexp[7Y1(1|(C”")711(1))]} £ g oMl o2 §
g I L e -
§ < ost | g
ol — 5/2 52 _ £ k3 M 028
wele) =t [(13(0)) +(B(0) ™ 2] o A N
Yeoh [1993], Hartmann & Neff [2003], Heimes [2005] R TRy e A o5 o 1°°
Time 5] Time [s]
Anisotropic strain energy functions
x10 . Post-processing x10°
Wa(C™, Ag) = "T [(1,(0'“’))“” (L(c=) ™" 74] RN - W10,
= 3 1 ; 3
3 E I =
Al-Kinani, Hartmann & Netz [2014] € 5 J ! } T T I
2 5 £ o5 1IN ‘h‘ I‘A“‘ l"‘hust
H s b o 2
W(C, Ay) = = +1 (ot § B ol i :u ,H H\‘\ g ”u :
£ 5 (it ﬂ"““ i w“w 5
H H { 058
Schréder, Wriggers & Balzani [2011] H gws ki H“; iy e sz
H g H T
sing & . { I
@ = [cow fiber angle ¢ = 50° ! e
0 2 04 06 08 1 = o 02 04 06 08 1
Holzapfel, Gasser & Ogden [2000] Time [s) Time [s)
) . Post-processing .
!
6.5] / 08 —
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Technische Sum mary

Mechanik/Dynamik

Energy and
Momentum @ Motivation:

conserving
variational based
time integration

of anisotropic > related with improved time and space approximations
hyperelastic

continua
Q Goals:

> Variationally consistent energy-momentum schemes

> Dynamic simulation methods for fiber-reinforced structures

> with higher-order Galerkin-based approximations
> and enhanced displacement gradients

© Strategy:

> Formulation of a mixed variational principle
> Introduction of a Galerkin-based time/space discretization
> Discrete variation at the time/space mesh points

@ Important results:

> Variationally consistent assumed strain approximations in time
> a new energy-consistent higher-order stress approximation
Summary > an energy-consistent higher-order accurate Q1E9-element
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