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Motivation, goals and strategy

Motivation

1 Dynamic simulations of fiber-reinforced materials in light-weight structures

Design of energy-momentum
schemes for anisotropic materials

1 Higher-order approximations

2 Enhanced displacement gradients

3 Assumed ’strain’ approximations

in time for matrix and fiber,

4 Superimposed algorithmic stress

fields for matrix and fiber

Variationally consistent design
of energy-momentum schemes

1 differential variational principles

(Jourdain’s, Gauss’s etc.)

2 continuous assumed ’strain’

approximation in time

3 discontinuous stress

approximation in time

Strategy (compare Betsch & Janz [2016], Schlögl & Leyendecker [2016])

1 Formulation of a mixed variational principle for continua

2 Space and time discretization of this variational principle

3 Energy-momentum schemes as discrete Euler-Lagrange equations



Energy and
Momentum
conserving

variational based
time integration
of anisotropic
hyperelastic

continua

Michael Groß,
Rajesh Ramesh

and Julian
Dietzsch

Introduction

Variational setting

Continuum model

Total energy balance

Variational principle

Euler-Lagrange equations

Discrete setting

Discrete variation

Discrete E-L-equations

Superimposed stress

Higher-order approx.

Numerical studies

Summary

3

Technische
Mechanik/Dynamik

Continuum model for fiber-reinforced materials

Transversely isotropic material
Schröder, Neff & Balzani [2005]

B0

X

ϕt

F t =∇Xϕt +H̃ t

a0

Bt

x1

x2

x3

ξ1

ξ2

ξ3

J0

J
−T
0

Enhanced displacement
gradient Q1E9 Simo, Armero & Taylor [1993]

Müller & Betsch [2007]

[H̃ 2(ξ)]αβ :=

ndim∑

I=1

[ΓI ]α [∇ξÑI(ξ)]β

[H̃ 0(ξ)]BA :=
j0

j(ξ)
[J 0]Bα[H̃ 2(ξ)]αβ [J

−1
0 ]βA

[H̃ t(ξ)]
a

A := [∇Xϕ
0
t ]aB[H̃ 0(ξ)]BA

[H̃ t(ξ)]
a

A =

ndim∑

I=1

[αI
t ]a [∇̃X ÑI(ξ)]A

Matrix and fiber deformation Klinkel, Sansour & Wagner [2005]

1 Deformation gradient of the fiber

FF := a ⊗ a0 = FA0 a = Fa0 A0 := a0 ⊗ a0

2 Right Cauchy-Green tensors

CF := FT
F FF := CFA0 CF := C : A0 ≡ I C

4 C := FTF

3 Second Piola-Kirchhoff stress tensor

S := 2

3∑

i=1

∂Ŵ (I C
1 , I

C
2 , I

C
3 ,CF)

∂I C
i

∂I C
i

∂C
+ 2
∂Ŵ (I C

1 , I
C
2 , I

C
3 ,CF)

∂CF

A0 + 2
∂WF(CF)

∂CF

A0
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Functional form of the total energy balance

Total energy balance Ḣ = 0

Ṫ (u̇, v̇, ṗ) + Π̇int(u̇, ˙̃
H , ˙̃

C , ˙̃CF ,S,SF ; S̃ , S̃F) + Π̇ext(u̇, ḣ) = 0

Kinetic power functional

Ṫ (u̇, v̇, ṗ) :=

∫

B0

[ρ0v − p] · v̇ dV −

∫

B0

ṗ · [v − u̇] dV +

∫

B0

p · ü dV

Stress power functional Π̇int(u̇, ˙̃H , ˙̃C , ˙̃CF ,S ,SF ; S̃, S̃F)

Π̇int :=
1

2

∫

B0

{[
2 DW (C̃) + S̃ − S

]
: ˙̃
C +
[
2 DWF(C̃F) + S̃F − SF : A0

]
: ˙̃CF

}

dV

−
1

2

∫

B0

Ṡ :
[
C̃ −C(u, H̃ )

]
dV +

1

2

∫

B0

S : Ċ(u̇, ˙̃
H ) dV

−
1

2

∫

B0

ṠF :
[
C̃F A0 −CF(u, H̃ )

]
dV +

1

2

∫

B0

SF : ĊF(u̇, ˙̃
H ) dV

External power functional Π̇ext(u̇, ḣ)

Π̇ext := −

∫

B0

ρ0b · u̇ dV −

∫

∂tB0

t · u̇ dA−

∫

∂uB0

{
h ·
(
u̇ − ˙̄u

)
+ ḣ · (u − ū)

}
dA
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Mixed Jourdain principle (cp. Schröder & Kuhl [2015], Klinkel & Wagner [1997], Hackl [1997])

Principle of virtual power δ∗Ḣ = 0 in mixed form

δ∗Ṫ (u̇, v̇, ṗ) + δ∗Π̇
int(u̇, ˙̃

H , ˙̃
C , ˙̃CF ,S ,SF ; S̃, S̃F) + δ∗Π̇

ext(u̇, ḣ) = 0

Virtual kinetic power δ∗Ṫ (u̇, v̇, ṗ)

δ∗Ṫ :=

∫

B0

[ρ0v − p] · δ∗v̇ dV −

∫

B0

δ∗ṗ · [v − u̇] dV +

∫

B0

ṗ · δ∗u̇ dV

Virtual stress power δ∗Π̇
int(u̇, ˙̃

H , ˙̃
C , ˙̃CF ,S ,SF ; S̃, S̃F)

δ∗Π̇
int :=

1

2

∫

B0

{[
2 DW (C̃) + S̃ − S

]
: δ∗

˙̃
C +
[
2 DWF(C̃F) + S̃F − SF : A0

]
: δ∗

˙̃CF

}

dV

−
1

2

∫

B0

δ∗S :
[

˙̃
C − Ċ(u̇, ˙̃

H )
]

dV +
1

2

∫

B0

F S :
[

∇X(δ∗u̇) + δ∗
˙̃

H
]

dV

−
1

2

∫

B0

δ∗SF :
[

˙̃CFA0 − ĊF(u̇, ˙̃
H )
]

dV +
1

2

∫

B0

FF SF :
[

∇X(δ∗u̇) + δ∗
˙̃

H
]

A0 dV

Virtual external power δ∗Π̇
ext(u̇, ḣ)

δ∗Π̇
ext := −

∫

B0

ρ0b · δ∗u̇ dV −

∫

∂tB0

t · δ∗u̇ dA−

∫

∂uB0

{
h · δ∗u̇ + δ∗ḣ · [u − ū]

}
dA
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Euler-Lagrange equations

Constitutive equations

ρ0v = p ∀t > t0 δ∗
˙̃

H = O and H̃ (t0) = O

2 DW (C̃) + S̃ = S ∀t > t0 SF =
[
2 DWF(C̃F) + S̃F

]
A0

Ċ(u̇, ˙̃
H ) = ˙̃

C with C̃(t0) = C(u0, H̃ (t0))

ĊF(u̇, ˙̃
H ) : A0 = ˙̃CF with C̃F(t0) = CF(u0, H̃ (t0)) : A0

Neumann and Dirichlet boundary conditions

[FS + FF (SF : A0)] N = t ∀t > t0 on ∂tB0

δ∗u̇ = 0 and u = ū with u(t0) = ū(t0) on ∂uB0

Equations of motion in first order form

v = u̇ with u(t0) = u0

Div[FS + FF (SF : A0)] + ρ0b = ṗ with p(t0) = p0 ≡ ρ0v0

Time evolution characteristics

1 continuous time evolutions of u, v, p as well as H̃ , C̃ , C̃F

2 discontinuous time evolution of the stresses S , SF and S̃ = O, S̃F = O
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Discrete variational principle (2nd-order accurate)

Discrete principle of virtual power at ξ1 = 0.5
N−1∑

n=0

δ∗Ḣ(u̇n
h (ξ1), v̇n

h (ξ1), ṗn
h (ξ1), ˙̃

H (ξ1), ˙̃
C

n
h (ξ1), ˙̃Cn

Fh
(ξ1),Sn

h (ξ1),Sn
Fh

(ξ1); S̃
n

h (ξ1), S̃n
Fh

(ξ1)) hn =

N−1∑

n=0

δ∗Ḣd(un+1, vn+1,pn+1,H n+1,Cn+1,CFn+1
,Sn+ 1

2
,SF

n+ 1
2

; S̃n+ 1
2
, S̃F

n+ 1
2

) hn = 0

Galerkin approximations

un
h (α) := un + α (un+1 − un) vn

h (α) := vn + α (vn+1 − vn) pn
h (α) := pn + α

(
pn+1 − pn

)

H̃
n

h (α) := H n + α (H n+1 −H n) C̃
n

h (α) := Cn + α (Cn+1 −Cn) C̃n
Fh

(α) := CFn
+ α
(
CFn+1

− CFn

)

Semidiscrete variational forms
∫

B0

[

Sn+ 1
2
− 2 DW (C̃n+ 1

2
)− S̃n+ 1

2

]

: δCn+1 dV = 0 =

∫

B0

[

SF
n+ 1

2

: A0 − 2 DWF(C̃Fn+ 1
2
)− S̃F

n+ 1
2

]

: δCFn+1
dV

∫

B0

[

ρ0vn+ 1
2
− pn+ 1

2

]

· δvn+1 dV = 0 =

∫

B0

[(
CFn+1

− CFn

)
A0 −

(

F
T
Fn+1

+ F
T
Fn

) (
FFn+1

− FFn

)]

: δSF
n+ 1

2

dV

∫

B0

[

vn+ 1
2
−

un+1 − un

hn

]

· δpn+1 dV = 0 =

∫

B0

[

Cn+1 −Cn −

(

F
T
n+1 + F

T
n

)

(Fn+1 − Fn)
]

: δSn+ 1
2

dV

∫

B0

δhn+1 · [un+1 − ūn+1] dA = 0 =

∫

B0

Fn+ 1
2

[

Sn+ 1
2

+
(

SF
n+ 1

2

: A0

)

A0

]

: δH n+1 dV

∫

∂tB0

tn+ 1
2
· δun+1 dA +

∫

∂uB0

hn+ 1
2
· δun+1 dA

=

∫

B0

{
pn+1 − pn

hn

+ B
T
n+ 1

2

[

Sn+ 1
2

+
(

SF
n+ 1

2

: A0

)

A0

]

− ρ0bn+ 1
2

}

· δun+1 dV
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Discrete Euler-Lagrange equations (2nd-order accurate)

Initial conditions

u(t0) = u0 p(t0) = ρ0v0 v(t0) = v0 C̃(t0) = (∇u0 + I )T(∇u0 + I ) H̃ (t0) = O

Discrete strong forms (compare Betsch & Janz [2016])

ρ0 [vn + vn+1] = pn + pn+1 hn [vn + vn+1] = 2 (un+1 − un)

2 DW (C̃n+ 1
2
) + S̃n+ 1

2
= Sn+ 1

2
SF

n+ 1
2

: A0 = 2 DWF(C̃F
n+ 1

2

) + S̃F
n+ 1

2

2 I
sym : FT

n+ 1
2

(Fn+1 − Fn) = Cn+1 −Cn

(
CFn+1

− CFn

)
A0 = 2 I

sym : FT
F

n+ 1
2

(
FFn+1

− FFn

)

Discrete weak forms due to Q1E9 compare Simo, Armero & Taylor [1993]
Müller & Betsch [2007]

2

hn

M

[
un+1 − un

hn

− vn

]

+

∫

B0

B
T
n+ 1

2

[

Sn+ 1
2

+
(

SF
n+ 1

2

: A0

)

A0

]

dV = Ht tn+ 1
2

+ Hu hn+ 1
2

+ M bn+ 1
2

M :=

∫

B0

ρ0 N
T

N dV Ht :=

∫

∂tB0

N̄
T

N̄ dV Hu :=

∫

∂uB0

N̄
T

N̄ dV

Bn+ 1
2

[un+1 − un] := I
sym : FT

n+ 1
2

[∇un+1 −∇un] Gn+ 1
2

[αn+1 −αn ] := I
sym : FT

n+ 1
2

[H n+1 −H n ]

∫

B0

G
T
n+ 1

2

[

Sn+ 1
2

+
(

SF
n+ 1

2

: A0

)

A0

]

dV = 0 H n+1 =

ndim∑

A=1

αA
n+1 ⊗ ∇̃ÑA

Discrete total energy balance

Tn+1 − Tn

hn

+
Πext

n+1 + Πext
n

hn

= −
1

2

∫

B0

[

Sn+ 1
2

+
(

SF
n+ 1

2

: A0

)

A0

]

: 2

[

Bn+ 1
2

un+1 − un

hn

+ Gn+ 1
2

αn+1 −αn

hn

]

︸ ︷︷ ︸

(C n+1−C n)/hn

dV
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Discrete superimposed fiber stress (2nd-order accurate)

Algorithmic claim for the fiber (one equation for 1 unknown)

1

2

∫

B0

[

2 DWF(C̃F
n+ 1

2

) + S̃F
n+ 1

2

]

A0 : [Cn+1 −Cn]
︸ ︷︷ ︸

CFn+1
−CFn

dV =

∫

B0

[
WF(CFn+1

)−WF(CFn
)
]

dV

Constrained variational problem (compare Gauss’s principle in Ramm [2011])

L(µ, S̃F
n+ 1

2

) :=
1

2

(

S̃F
n+ 1

2

)2

+ µG(S̃F
n+ 1

2

) δ∗L(µ, S̃F
n+ 1

2

) = 0

Local constraint G., Betsch & Steinmann [2005]

G(S̃F
n+ 1

2

) := WFn+1
−WFn

−
1

2

[

2 DWF(C̃n+ 1
2
) + S̃F

n+ 1
2

] [
CFn+1

− CFn

]
= 0

Discrete Euler-Lagrange equations

∂L

∂S̃F
n+ 1

2

≡ S̃F
n+ 1

2

−
µ

2

[
CFn+1

− CFn

]
= 0

∂L

∂µ
≡ G(S̃F

n+ 1
2

) = 0

Discrete superimposed fiber stress Gonzalez [2000]

S̃F
n+ 1

2

= 2
G(O)

[
CFn+1

− CFn

]

(
(

(
(

(
((

[
CFn+1

− CFn

]
(

(
(

(
(

((
[
CFn+1

− CFn

]
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Discrete superimposed stress tensor (2nd-order accurate)

Algorithmic claim for the matrix (one equation for 6 unknowns)

1

2

∫

B0

[

2 DW (C̃n+ 1
2
) + S̃n+ 1

2

]

: [Cn+1 −Cn] dV =

∫

B0

[W (Cn+1)−W (Cn)] dV

Constrained variational problem

L(µ, S̃n+ 1
2
) :=

1

2
C̃n+ 1

2
S̃n+ 1

2
: S̃n+ 1

2
C̃n+ 1

2
+ µG(S̃n+ 1

2
) δ∗L(µ, S̃n+ 1

2
) = 0

Local constraint

G(S̃n+ 1
2
) := Wn+1 −Wn −

1

2

[

2 DW (C̃n+ 1
2
) + S̃n+ 1

2

]

: [Cn+1 −Cn ] = 0

Discrete Euler-Lagrange equations

∂L

∂S̃n+ 1
2

≡ C̃n+ 1
2

S̃n+ 1
2

C̃n+ 1
2
−
µ

2
[Cn+1 −Cn ] = O

∂L

∂µ
≡ G(S̃n+ 1

2
) = 0

Discrete superimposed stress tensor Armero & Zambrana-Rojas [2007]

S̃n+ 1
2

= 2
G(O)

C̃
−1

n+ 1
2

[Cn+1 −Cn] : [Cn+1 −Cn] C̃
−1

n+ 1
2

C̃
−1

n+ 1
2

[Cn+1 −Cn] C̃
−1

n+ 1
2
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Higher-order accurate approximation

Discrete variation principle
N−1∑

n=0

k∑

i=1

δ∗Ḣ(u̇n
h (ξi), v̇

n
h (ξi), ṗ

n
h (ξi),

˙̃
C

n
h (ξi),S

n
h (ξi); ρ0,A0,κ0, b

n
h (ξi), t

n
h (ξi), ū

n
h (ξi)) wi hn = 0

Galerkin-based approximations

un
h (α) :=

k+1∑

j=1

Mj(α) un
j vn

h (α) :=
∑

Mj(α) vn
j pn

h (α) :=
∑

Mj(α) pn
j

H̃
n

h (α) :=
∑

Mj(α) H
n
j C̃

n

h (α) :=
∑

Mj(α) C
n
j C̃n

Fh
(α) :=

∑

Mj(α) Cn
Fj

Discrete weak assumed strain equation
k∑

i=1

∫

B0

δ∗S
n
h (ξi) :

[

dC̃
n

h (ξi)

dα
−
◦

C (
◦

u
n

h (ξi))

]

wi dV = 0 i = 1, . . . , k

Discrete local assumed strain equation (Euler-Lagrange equation)

dC̃
n

h (ξi)

dα
−
◦

C (
◦

u
n

h (ξi)) = O i = 1, . . . , k
dC̃

n

h (α)

dα
=

k+1∑

j=1

◦

M j (α) C
n
j ≡

k∑

i=1

M̃i(α) C̃
n

i

Unknown nodal values C
n
l , l = 2, . . . , k

Cn
l :=

k∑

i=1

mli

◦

C (
◦

u
n

h (ξi)) + Cn
1 with m =







◦

M 2 (ξ1) . . .
◦

M k+1 (ξ1)
... · · ·

...
◦

M 2 (ξk) . . .
◦

M k+1 (ξk)







−1
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Technische
Mechanik/Dynamik

Higher-order accurate stress approximation

Nodal values for k = 1

Cn ≡ Cn
1 := (Fn

1 )T Fn
1

Cn+1 ≡ Cn
2 := (Fn

2 )T Fn
2

Nodal values for k = 2

Cn ≡ Cn
1 := (Fn

1 )T Fn
1

Cn
2 :=

1

3

[
F

n
1 + F

n
3

2
− Fn

2

]T [
F

n
1 + F

n
3

2
− Fn

2

]

+ (Fn
2 )TFn

2

Cn+1 ≡ Cn
3 := (Fn

3 )T Fn
3

Old superimposed stress with mixed ’strain’ approximation in time

S̃
n

h (ξi) := 2
G(O)

k∑

l=1

◦

C̃
n

h (ξl) :
◦

C (
◦

u
n

h )(ξl) wl

◦

C̃
n

h (ξi)

(energy consistent, but not varia-
tionally consistent approximation)

G., Betsch & Steinmann [2005]

with

G(O) := Wn+1 −Wn −

k∑

l=1

∂W (C̃
n

h (ξl); A0,κ0)

∂C̃
n

h (ξl)
:
◦

C (
◦

u
n

h )(ξl) wl = 0 C̃
n

h (α) =
k+1∑

j=1

Mj+1(α) [Fn
j ]TFn

j

New superimposed stress with uniform ’strain’ approximation in t

S̃
n

h (ξi) := 2
G(O)

k∑

l=1

[C̃
n

h (ξl)]
−1

◦

C̃
n
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◦

C̃
n

h (ξl) [C̃
n

h (ξl)]
−1 wl

[C̃
n

h (ξi)]
−1

◦

C̃
n

h (ξi) [C̃
n

h (ξi)]
−1

with

G(O) := Wn+1 −Wn −

k∑

l=1

∂W (C̃
n

h (ξl); A0,κ0)

∂C̃
n

h (ξl)
:

◦

C̃
n

h (ξl) wl = 0 C̃
n

h (α) =

k+1∑

j=1

Mj+1(α) C
n
j
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Technische
Mechanik/Dynamik

Rotating pipe with inner taper (I) (Q1-element)

(influence of reinforcing fibers; linear finite elements in time)

Pipe material
Isotropic strain energy functions

W iso(C iso) := µ10

[
I1(C iso)− I1(I )

]

+ µ20

[
I1(C iso)− I1(I )

]2

+ µ30

[
I1(C iso)− I1(I )

]3

+ µ01

[
I2(C iso)− I2(I )

]

+
Y1

Y2

{
1− exp

[
−Y2

(
I1(C iso)− I1(I )

)]}

W vol(C) :=
κvol

50

[

(I3(C))5/2 + (I3(C))−5/2
− 2
]

Yeoh [1993], Hartmann & Neff [2003], Heimes [2005]

Anisotropic strain energy functions

W ani(C iso,A0) :=
κani

3

[(
I4(C iso)

)3/2
+ 3
(
I4(C iso)

)−1/2
− 4
]

Al-Kinani, Hartmann & Netz [2014]

W fib(C ,A0) :=
g0

gc + 1
[I4(C)]gc+1

Schröder, Wriggers & Balzani [2011]

a0 :=





sin φ
cosφ

0



 fiber angle φ ∈ [0,
π

2
[

Holzapfel, Gasser & Ogden [2000]

Initial conditions

uA
0 = 0 vA

0 = ω ×XA

ω = ω0 e1 = −15 e1

no external forces

Current configurations at T = 0.5
Colour indicates circumferential elongation (hn = 0.01)
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Technische
Mechanik/Dynamik

Rotating pipe with inner taper (II) (Q1-element)

(influence of reinforcing fibers; linear finite elements in time)

Pipe material
Isotropic strain energy functions

W iso(C iso) := µ10

[
I1(C iso)− I1(I )

]

+ µ20

[
I1(C iso)− I1(I )

]2

+ µ30

[
I1(C iso)− I1(I )

]3

+ µ01

[
I2(C iso)− I2(I )

]

+
Y1

Y2

{
1− exp

[
−Y2

(
I1(C iso)− I1(I )

)]}

W vol(C) :=
κvol

50

[

(I3(C))5/2 + (I3(C))−5/2
− 2
]

Yeoh [1993], Hartmann & Neff [2003], Heimes [2005]

Anisotropic strain energy functions

W ani(C iso,A0) :=
κani

3

[(
I4(C iso)

)3/2
+ 3
(
I4(C iso)

)−1/2
− 4
]

Al-Kinani, Hartmann & Netz [2014]

W fib(C ,A0) :=
g0

gc + 1
[I4(C)]

gc+1

Schröder, Wriggers & Balzani [2011]

a0 :=





sin φ
cosφ

0



 fiber angle φ ∈ [0,
π

2
[

Holzapfel, Gasser & Ogden [2000]

Initial conditions

uA
0 = 0 vA

0 = ω ×XA

ω = ω0 e1 = −15 e1

no external forces

Current configurations at T = 1.0
Colour indicates circumferential elongation (hn = 0.01)
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Technische
Mechanik/Dynamik

Rotating pipe with inner taper (III) (Q1-element)

(influence of reinforcing fibers; linear finite elements in time)

Pipe material
Isotropic strain energy functions

W iso(C iso) := µ10

[
I1(C iso)− I1(I )

]

+ µ20

[
I1(C iso)− I1(I )

]2

+ µ30

[
I1(C iso)− I1(I )

]3

+ µ01

[
I2(C iso)− I2(I )

]

+
Y1

Y2

{
1− exp

[
−Y2

(
I1(C iso)− I1(I )

)]}

W vol(C) :=
κvol

50

[

(I3(C))
5/2

+ (I3(C))
−5/2
− 2
]

Yeoh [1993], Hartmann & Neff [2003], Heimes [2005]

Anisotropic strain energy functions

W ani(C iso,A0) :=
κani

3

[(
I4(C iso)

)3/2
+ 3
(
I4(C iso)

)−1/2
− 4
]

Al-Kinani, Hartmann & Netz [2014]

W fib(C ,A0) :=
g0

gc + 1
[I4(C)]

gc+1

Schröder, Wriggers & Balzani [2011]

a0 :=





sin φ
cosφ

0



 fiber angle φ = 50◦

Holzapfel, Gasser & Ogden [2000]

Initial conditions

uA
0 = 0 vA

0 = ω ×X
A

ω = ω0 e1 = −15 e1

no external forces

Conservation properties
time step size hn = 0.01 and Newton tolerance 10−5
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Technische
Mechanik/Dynamik

Rotating pipe with inner taper (IV) (Q1-element)

(influence of reinforcing fibers; linear finite elements in time)

Pipe material
Isotropic strain energy functions

W iso(C iso) := µ10

[
I1(C iso)− I1(I )

]

+ µ20

[
I1(C iso)− I1(I )

]2

+ µ30

[
I1(C iso)− I1(I )

]3

+ µ01

[
I2(C iso)− I2(I )

]

+
Y1

Y2

{
1− exp

[
−Y2

(
I1(C iso)− I1(I )

)]}

W vol(C) :=
κvol

50

[

(I3(C))
5/2

+ (I3(C))
−5/2
− 2
]

Yeoh [1993], Hartmann & Neff [2003], Heimes [2005]

Anisotropic strain energy functions

W ani(C iso,A0) :=
κani

3

[(
I4(C iso)

)3/2
+ 3
(
I4(C iso)

)−1/2
− 4
]

Al-Kinani, Hartmann & Netz [2014]

W fib(C ,A0) :=
g0

gc + 1
[I4(C)]

gc+1

Schröder, Wriggers & Balzani [2011]

a0 :=





sin φ
cosφ

0



 fiber angle φ ∈ [0,
π

2
[

Holzapfel, Gasser & Ogden [2000]

Initial conditions

uA
0 = 0 vA

0 = ω ×XA

ω = ω0 e1 = −15 e1

no external forces

Pipe elongations at T = 0.5 (hn = 0.01)
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Technische
Mechanik/Dynamik

Rotating pipe under pressure (I) (Q1-element)

(influence of internal pressure; linear finite elements in time)

Pipe material
Isotropic strain energy functions

W iso(C iso) := µ10

[
I1(C iso)− I1(I )

]

+ µ20

[
I1(C iso)− I1(I )

]2

+ µ30

[
I1(C iso)− I1(I )

]3

+ µ01

[
I2(C iso)− I2(I )

]

+
Y1

Y2

{
1− exp

[
−Y2

(
I1(C iso)− I1(I )

)]}

W vol(C) :=
κvol

50

[

(I3(C))
5/2

+ (I3(C))
−5/2
− 2
]

Yeoh [1993], Hartmann & Neff [2003], Heimes [2005]

Anisotropic strain energy functions

W ani(C iso,A0) :=
κani

3

[(
I4(C iso)

)3/2
+ 3
(
I4(C iso)

)−1/2
− 4
]

Al-Kinani, Hartmann & Netz [2014]

W fib(C ,A0) :=
g0

gc + 1
[I4(C)]

gc+1

Schröder, Wriggers & Balzani [2011]

a0 :=





sin φ
cosφ

0



 fiber angle φ = 50◦

Holzapfel, Gasser & Ogden [2000]

Initial conditions

uA
0 = 0 vA

0 = ω ×XA

ω = ω0 e1 = −7 e1

Fluid pressure in the pipe
p(r) = p0 + 1

2
ρF ω

2
0 r2

Pipe configurations at T = 1.0 (hn = 0.01)

Colours indicate von-Mises stress and red arrows the pressure load
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Technische
Mechanik/Dynamik

Rotating pipe under pressure (II) (Q1-element)

(influence of internal pressure; linear finite elements in time)

Pipe material
Isotropic strain energy functions

W iso(C iso) := µ10

[
I1(C iso)− I1(I )

]

+ µ20

[
I1(C iso)− I1(I )

]2

+ µ30

[
I1(C iso)− I1(I )

]3

+ µ01

[
I2(C iso)− I2(I )

]

+
Y1

Y2

{
1− exp

[
−Y2

(
I1(C iso)− I1(I )

)]}

W vol(C) :=
κvol

50

[

(I3(C))
5/2

+ (I3(C))
−5/2
− 2
]

Yeoh [1993], Hartmann & Neff [2003], Heimes [2005]

Anisotropic strain energy functions

W ani(C iso,A0) :=
κani

3

[(
I4(C iso)

)3/2
+ 3
(
I4(C iso)

)−1/2
− 4
]

Al-Kinani, Hartmann & Netz [2014]

W fib(C ,A0) :=
g0

gc + 1
[I4(C)]

gc+1

Schröder, Wriggers & Balzani [2011]

a0 :=





sin φ
cosφ

0



 fiber angle φ = 50◦

Holzapfel, Gasser & Ogden [2000]

Initial conditions

uA
0 = 0 vA

0 = ω ×X
A

ω = ω0 e1 = −7 e1

Fluid pressure in the pipe
p(r) = p0 + 1

2
ρF ω

2
0 r2

Conservation properties
time step size hn = 0.01 and pressure p0 = 120 [N/sqm]
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Technische
Mechanik/Dynamik

Rotating pipe under pressure (III) (Q1-element)

(influence of higher-order finite elements in time)

Pipe material
Isotropic strain energy functions

W iso(C iso) := µ10

[
I1(C iso)− I1(I )

]

+ µ20

[
I1(C iso)− I1(I )

]2

+ µ30

[
I1(C iso)− I1(I )

]3

+ µ01

[
I2(C iso)− I2(I )

]

+
Y1

Y2

{
1− exp

[
−Y2

(
I1(C iso)− I1(I )

)]}

W vol(C) :=
κvol

50

[

(I3(C))
5/2

+ (I3(C))
−5/2
− 2
]

Yeoh [1993], Hartmann & Neff [2003], Heimes [2005]

Anisotropic strain energy functions

W ani(C iso,A0) :=
κani

3

[(
I4(C iso)

)3/2
+ 3
(
I4(C iso)

)−1/2
− 4
]

Al-Kinani, Hartmann & Netz [2014]

W fib(C ,A0) :=
g0

gc + 1
[I4(C)]

gc+1

Schröder, Wriggers & Balzani [2011]

a0 :=





sin φ
cosφ

0



 fiber angle φ = 50◦, 60◦

Holzapfel, Gasser & Ogden [2000]

Initial conditions

uA
0 = 0 vA

0 = ω ×XA

ω = ω0 e1 = −7 e1

Fluid pressure in the pipe
p(r) = p0 + 1

2
ρF ω

2
0 r2

Deformation/stress for higher-order FeT
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Rotating pipe under pressure (IV) (Q1-element)

(influence of higher-order finite elements in time)

Pipe material
Isotropic strain energy functions

W iso(C iso) := µ10

[
I1(C iso)− I1(I )

]

+ µ20

[
I1(C iso)− I1(I )

]2

+ µ30

[
I1(C iso)− I1(I )

]3

+ µ01

[
I2(C iso)− I2(I )

]

+
Y1

Y2

{
1− exp

[
−Y2

(
I1(C iso)− I1(I )

)]}

W vol(C) :=
κvol

50

[

(I3(C))
5/2

+ (I3(C))
−5/2
− 2
]

Yeoh [1993], Hartmann & Neff [2003], Heimes [2005]

Anisotropic strain energy functions

W ani(C iso,A0) :=
κani

3

[(
I4(C iso)

)3/2
+ 3
(
I4(C iso)

)−1/2
− 4
]

Al-Kinani, Hartmann & Netz [2014]

W fib(C ,A0) :=
g0

gc + 1
[I4(C)]

gc+1

Schröder, Wriggers & Balzani [2011]

a0 :=





sin φ
cosφ

0



 fiber angle φ = 60◦

Holzapfel, Gasser & Ogden [2000]

Initial conditions

uA
0 = 0 vA

0 = ω ×X
A

ω = ω0 e1 = −7 e1

Fluid pressure in the pipe
p(r) = p0 + 1

2
ρF ω

2
0 r2

Conservation properties for quartic FeT
time step size hn = 0.01 and pressure p0 = 70 [N/sqm]
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Rotating pipe under pressure (Q1-element)

(rotor instability without bearings; linear finite elements in time)

Pipe material
Isotropic strain energy functions

W iso(C iso) := µ10

[
I1(C iso)− I1(I )

]

+ µ20

[
I1(C iso)− I1(I )

]2

+ µ30

[
I1(C iso)− I1(I )

]3

+ µ01

[
I2(C iso)− I2(I )

]

+
Y1

Y2

{
1− exp

[
−Y2

(
I1(C iso)− I1(I )

)]}

W vol(C) :=
κvol

50

[

(I3(C))
5/2

+ (I3(C))
−5/2
− 2
]

Yeoh [1993], Hartmann & Neff [2003], Heimes [2005]

Anisotropic strain energy functions

W ani(C iso,A0) :=
κani

3

[(
I4(C iso)

)3/2
+ 3
(
I4(C iso)

)−1/2
− 4
]

Al-Kinani, Hartmann & Netz [2014]

W fib(C ,A0) :=
g0

gc + 1
[I4(C)]

gc+1

Schröder, Wriggers & Balzani [2011]

a0 :=





sin φ
cosφ

0



 fiber angle φ = 70◦

Holzapfel, Gasser & Ogden [2000]

Initial conditions

uA
0 = 0 vA

0 = ω ×XA

ω = ω0 e1 = −7 e1

Fluid pressure in the pipe
p(r) = p0 + 1

2
ρF ω

2
0 r2

Pipe configurations at T = 3.22 (hn = 0.01)

Colours indicate von Mises stress
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Rotating disc (I) (Q1E9-element)

(shear locking in dynamics; linear finite elements in time)

Pipe material
Isotropic strain energy functions

W iso(C iso) := µ10

[
I1(C iso)− I1(I )

]

+ µ20

[
I1(C iso)− I1(I )

]2

+ µ30

[
I1(C iso)− I1(I )

]3

+ µ01

[
I2(C iso)− I2(I )

]

+
Y1

Y2

{
1− exp

[
−Y2

(
I1(C iso)− I1(I )

)]}

W vol(C) :=
κvol

50

[

(I3(C))
5/2

+ (I3(C))
−5/2
− 2
]

Yeoh [1993], Hartmann & Neff [2003], Heimes [2005]

Anisotropic strain energy functions

W ani(C iso,A0) :=
κani

3

[(
I4(C iso)

)3/2
+ 3
(
I4(C iso)

)−1/2
− 4
]

Al-Kinani, Hartmann & Netz [2014]

W fib(C ,A0) :=
g0

gc + 1
[I4(C)]gc+1

Schröder, Wriggers & Balzani [2011]

a0 :=





sin φ
cosφ

0



 fiber angle φ = 0◦

Holzapfel, Gasser & Ogden [2000]

Initial conditions

uA
0 = 0 vA

0 = ω ×X
A

ω = ω0 e1 = −15 e1

no external forces

Current configurations at t = 0, . . . , 10
Colour indicates circumferential elongation (hn = 0.01)
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Rotating disc (II) (Q1-element)

(shear locking in dynamics; linear finite elements in time)

Pipe material
Isotropic strain energy functions

W iso(C iso) := µ10

[
I1(C iso)− I1(I )

]

+ µ20

[
I1(C iso)− I1(I )

]2

+ µ30

[
I1(C iso)− I1(I )

]3

+ µ01

[
I2(C iso)− I2(I )

]

+
Y1

Y2

{
1− exp

[
−Y2

(
I1(C iso)− I1(I )

)]}

W vol(C) :=
κvol

50

[

(I3(C))
5/2

+ (I3(C))
−5/2
− 2
]

Yeoh [1993], Hartmann & Neff [2003], Heimes [2005]

Anisotropic strain energy functions

W ani(C iso,A0) :=
κani

3

[(
I4(C iso)

)3/2
+ 3
(
I4(C iso)

)−1/2
− 4
]

Al-Kinani, Hartmann & Netz [2014]

W fib(C ,A0) :=
g0

gc + 1
[I4(C)]gc+1

Schröder, Wriggers & Balzani [2011]

a0 :=





sin φ
cosφ

0



 fiber angle φ = 0◦

Holzapfel, Gasser & Ogden [2000]

Initial conditions

uA
0 = 0 vA

0 = ω ×X
A

ω = ω0 e1 = −15 e1

no external forces

Current configurations at t = 0, . . . , 10
Colour indicates circumferential elongation (hn = 0.01)
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Rotating disc (III) (Q1E9-element)

(shear locking in dynamics; linear finite elements in time)

Pipe material
Isotropic strain energy functions

W iso(C iso) := µ10

[
I1(C iso)− I1(I )

]

+ µ20

[
I1(C iso)− I1(I )

]2

+ µ30

[
I1(C iso)− I1(I )

]3

+ µ01

[
I2(C iso)− I2(I )

]

+
Y1

Y2

{
1− exp

[
−Y2

(
I1(C iso)− I1(I )

)]}

W vol(C) :=
κvol

50

[

(I3(C))5/2 + (I3(C))−5/2
− 2
]

Yeoh [1993], Hartmann & Neff [2003], Heimes [2005]

Anisotropic strain energy functions

W ani(C iso,A0) :=
κani

3

[(
I4(C iso)

)3/2
+ 3
(
I4(C iso)

)−1/2
− 4
]

Al-Kinani, Hartmann & Netz [2014]

W fib(C ,A0) :=
g0

gc + 1
[I4(C)]

gc+1

Schröder, Wriggers & Balzani [2011]

a0 :=





sin φ
cosφ

0



 fiber angle φ = 0◦

Holzapfel, Gasser & Ogden [2000]

Initial conditions

uA
0 = 0 vA

0 = ω ×X
A

ω = ω0 e1 = −15 e1

no external forces

Conservation properties
time step size hn = 0.01 and Newton tolerance 10−5
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Rotating disc (IV) (Q1-element)

(shear locking in dynamics; linear finite elements in time)

Pipe material
Isotropic strain energy functions

W iso(C iso) := µ10

[
I1(C iso)− I1(I )

]

+ µ20

[
I1(C iso)− I1(I )

]2

+ µ30

[
I1(C iso)− I1(I )

]3

+ µ01

[
I2(C iso)− I2(I )

]

+
Y1

Y2

{
1− exp

[
−Y2

(
I1(C iso)− I1(I )

)]}

W vol(C) :=
κvol

50

[

(I3(C))5/2 + (I3(C))−5/2
− 2
]

Yeoh [1993], Hartmann & Neff [2003], Heimes [2005]

Anisotropic strain energy functions

W ani(C iso,A0) :=
κani

3

[(
I4(C iso)

)3/2
+ 3
(
I4(C iso)

)−1/2
− 4
]

Al-Kinani, Hartmann & Netz [2014]

W fib(C ,A0) :=
g0

gc + 1
[I4(C)]

gc+1

Schröder, Wriggers & Balzani [2011]

a0 :=





sin φ
cosφ

0



 fiber angle φ = 0◦

Holzapfel, Gasser & Ogden [2000]

Initial conditions

uA
0 = 0 vA

0 = ω ×X
A

ω = ω0 e1 = −15 e1

no external forces

Conservation properties
time step size hn = 0.01 and Newton tolerance 10−5
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Summary

1 Motivation:

◮ Dynamic simulation methods for fiber-reinforced structures
◮ related with improved time and space approximations

2 Goals:

◮ Variationally consistent energy-momentum schemes
◮ with higher-order Galerkin-based approximations
◮ and enhanced displacement gradients

3 Strategy:

◮ Formulation of a mixed variational principle
◮ Introduction of a Galerkin-based time/space discretization
◮ Discrete variation at the time/space mesh points

4 Important results:

◮ Variationally consistent assumed strain approximations in time
◮ a new energy-consistent higher-order stress approximation
◮ an energy-consistent higher-order accurate Q1E9-element
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