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Abstract. The nonlinear finite element method is a computational method in the vari-
ational simulation of material models for materials with and without microstructures [1].
Taking into account microstructures of engineering materials in their computational mod-
els is often worthwhile to improve numerical predictions [2]. An example is the modelling
of fiber-reinforced materials, which are manufactured on the microscale by filaments or
on the mesoscale by rovings, respectively. A macroscopic finite element simulation of
both materials provides an anisotropic continuum model. However, fiber-reinforced ma-
terials based on rovings demand for continua with extended kinematics. A computational
modelling of extended continua is possible by a mixed finite element method. In this
contribution, we show the introduction of internal rotational degrees of freedom to model
also a stiffness with respect to roving flexure and twist. Furthermore, a corresponding
structure-preserving time integration is obtained. Numerical examples also demonstrate
the additional continuum stiffness owing to the consideration of roving flexure and twist.

1 INTRODUCTION

In rotordynamical systems, fiber-reinforced materials with fiber rovings and cured ma-
trix material have gained great significance for engineers. For instance, there are woven
roving structures as for turbine blades in Reference [3], or structures with unidirectional
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Figure 1: Sketch of the cross-section of a body with rovings [4] (diagram a). In [7], the stiffness effect
of such rovings is modelled by anisotropy with roving tension and curvature-twist stiffness (diagram b).

rovings manufactured by the tailored fiber placement (TFP) for pump rotors in Refer-
ence [4]. Rovings are fiber bundles with a diameter in the range of millimeters (see Fig. 1),
such that from a mechanical point of view a certain roving stiffness with respect to flexure
and twist has to be taken into account. This is in contrast to the fabrication of fiber-
reinforced materials by filaments, because here the fiber diameters are in the range of
micrometers and a fiber flexure and twist stiffness can be neglected.

The computational modelling of fiber-reinforced materials based on filaments can be
performed by an anisotropic Cauchy continuum based on structural tensors (see Refer-
ence [5]). The fibers are here assumed to be infinitely thin and only transmit tension
forces along the fiber directions. But, as a finite diameter of rovings leads to a stiffness
with respect to a local flexure and twist, the continuum formulation has to allow for
length scales in the strain energy. Such length scales can be introduced by gradient-based
continuum formulations as in Reference [6], or by continuum formulations with local ro-
tational degrees of freedom as in Reference [7]. By means of the latter formulation, the
flexure and twist can be associated with independent length scales, such that a flexural
and a torsional rigidity can be prescribed independently as in structures.

Therefore, we follow Reference [7] and introduce by a mixed finite element method
local rotational degrees of freedom, which are numerically independent, but physically
connected to the displacement degrees of freedom due to the assumption of a perfect
roving-matrix interface without slip. This local constraint is realized by a Hu-Washizu
functional with respect to the antisymmetric part of the spatial velocity gradient of the
continuum. Since we are interested in dynamic simulations in general, and in energy-
momentum time integrations of dynamical problems in particular, we apply the mixed
principle of virtual power in Reference [7] as rationale for transient finite element methods.
Here, the space-time test functions fulfill the requirements of a Petrov-Galerkin method
in time as in Reference [8], and simultaneously, the requirements of a discrete energy-
momentum method in Reference [9] are satisfied for higher-order accuracies in time.
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2 CONTINUUM MODEL AND ITS COMPUTATIONAL SETTING

We introduce local rotational degrees of freedom α ∈ R
ndim of a continuum body

B ⊂ R
ndim moving in the ndim- dimensional Euclidean space by means of the identity

I
skw : Ḟ F−1 = −ǫ · α̇ (1)

where 2 Iskw = ǫ · ǫ denotes the double skew-symmetric projection tensor expressed by
the third-order Levi-Civita tensor ǫ. The second-order tensor F := Grad[ϕ] denotes the
material gradient of the deformation ϕ : B0× [0, T ] → Bt during the time interval [0, T ],
that is the deformation gradient. We denote by B0 the initial configuration with position
vectors X ∈ B0, and Bt indicates the current configuration of the body B with position
vectors x ∈ Bt. Thus, by means of the defined rotation mapping α : B0 × [0, T ] ⊂
R

ndim × R → R
ndim , a local rotation (polar) vector γ(x) ∈ R

ndim at the material point
x ∈ Bt is defined. We enforce Eq. (1) by means of the Lagrange multiplier functional

Π̇rot(α̇, Ḟ , τ t
skw) :=

∫

B0

τ t
skw : ǫ ·

[

1

2
ǫ : Ḟ F−1 + α̇

]

dV (2)

using the Hu-Washizu method in the mixed principle of virtual power of Reference [7]. The
Lagrange multiplier τ t

skw denotes the skew-symmetric part of the Kirchhoff stress tensor.
A variation with respect to the fields in the argument list leads to the corresponding
equations or contributions of the time evolution equations. The variation δ∗Ḟ leads to
the contribution of τ t

skw in the equation of motion. The ∗ is a wildcard for 0 and 1, because
we apply here zero-variations with respect to fields directly as in the principle of virtual
work, and one-variations with respect to first time derivatives as in Jourdain’s principle.
Therefore, the designation ‘mixed principle’. The δ∗τ

t
skw variation leads to the weak form

of Eq. (1). Finally, the δ∗α̇ variation furnishes a contribution of the independent local
angular momentum balance equation. For more details see Reference [7].

2.1 Covariant formulation of the internal rotational degrees of freedom

In order to derive strain and stress measures associated with the internal rotational de-
grees of freedom, we start with a covariant formulation. Therefore, we consider curvilinear
coordinates ξi, i = 1, . . . , ndim, of a convected coordinate system (see Fig. 2). Analogous
to the parametrization of the tangent vector dx(ξ, t), ξ = (ξ1, . . . , ξndim), by means of

dx(ξ, t) =
∂x(ξ, t)

∂ξj
dξj ≡

∂ϕ(X(ξ), t)

∂ξj
dξj =: dξj gj (3)

associated with the covariant basis vectors gj, j = 1, . . . , ndim, we obtain dγ(ξ, t) =
dαk(ξ, t) gk of the differential rotation vector dγ(x, t). By inserting the total differential
dαk(ξ, t) = αk

,j dξ
j, we arrive at dγ = αk

,j dξ
j gk =: dξj γj with the vectors γj := αk

,j gk as
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Figure 2: Initial configuration B0 and current configuration Bt with their covariant basis
vectors Gi and gi, i = 1, . . . , ndim, respectively (red arrows) as well as the basis vectors
γi := αk

,i gk, (summation convention applied) pertaining to the local continuum rotation vector

γ(ξ1, . . . , ξndim , t) := α(X(ξ1, . . . , ξndim), t) (blue double arrows) with the internal rotational degrees
of freedom αi(ξ1, . . . , ξndim). Lines ξi denote curvilinear coordinates (cp. Reference [1]).

axial basis vectors. Hence, using the defined rotation mapping, the rotational covariant
basis vectors can be analogously defined as

γi :=
∂α(X(ξ), t)

∂ξi
= αk

,i gk (4)

Motivated by Reference [1], these covariant axial basis vectors are visualized in Fig. 2 by
a double-arrow tripod. The rotational basis vectors γi directly lead to rotational metric
coefficients Kij := gi · γj and γij := γi · γj. Whereas the coefficients Kij define the
covariant rotational basis vectors γj := Kij g

i, the γij define contravariant rotational
basis vectors γi. The metric coefficients Kij define a rotational metric tensor denoted by

gα :=
∂α

∂x
≡ grad[α] (5)

where the operator grad[•] indicates the partial derivative with respect to x ∈ Bt. The
rotation gradientGα := Grad[α] maps the material tangent vector dX into the differential
rotation vector dγ. The curvature-twist tensor

K := F t gα F (6)

denotes a material deformation measure for differential vectors dx with respect to the
rotational metric tensor gα. The superscript ‘t’ indicates the tensor transposition.
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2.2 Covariant formulation of transverse isotropy

We consider rovings embedded in a cured matrix material by assuming a perfect roving-
matrix interface. We restrict us to one roving direction at each material point (transverse
isotropy). We introduce a covariant kinematic formulation for the roving direction vector
a0 in the initial configuration B0 and at in the current configuration Bt, respectively.
We first define the unstretched roving direction vector a0 := ai Gi and the deformed
roving direction vector at := ai gi by using the covariant basis vectors. In this way, we
obtain roving metric coefficients GF := a0 · a0 and CF := at · at, respectively. The
metric coefficient CF denotes the squared roving stretch. Note that, usually, the metric
coefficient GF is unity, but, formally, we are able to define contravariant roving direction
vectors a♭

0 := a0/GF and a♭
t := at/CF . The structural tensor A0 := a0 ⊗ a♭

0 plays
the role of an identity tensor. The roving deformation gradient F F := at ⊗ a♭

0 maps
the initial roving direction vector a0 to the current roving vector at. Analogous to the
deformation of line elements dx, derived by using the inner product 〈dx, dx〉g with respect
to the translational metric tensor g, we derive the roving deformation by using the inner
product 〈at, dx〉g. Accordingly, we arrive at the roving deformation tensor

CA := F t
F g F ≡ A0C (7)

where C := F t g F denotes the right Cauchy-Green tensor of the body. The basic invari-
ants I4(C,a0) := a0 · C · a0 ≡ CF and J5(C,a0) := a0 · CC · a0, which measure the
squared roving stretch CF and the distorsion of the rovings with respect to the matrix
material, respectively, can be then replaced by

I1(CA) := CA : G−1 =
I4(C,a0)

GF

J2(CA) := CA : CA =
J5(C,a0)

GF

(8)

with the translational metric tensorG with respect to the reference configuration B0. The
roving curvature-twist deformation can be analogously determined by the inner product
〈at, dx〉g

α

with respect to the rotational metric tensor gα. This leads to the tensor

KF := F t
F gα F ≡ A0K (9)

as roving curvature-twist tensor. The basic invariants

I1(KF ) := KF : G−1 =
TF

GF

J2(KF ) := KF : KF =
1

2

BF

GF

(10)

measure the roving twist TF per unit length GF and the curvature BF of rovings with unit
length GF , respectively. We also aim at the consideration of rovings with organic fibers,
which are viscoelastic and thus described by an ‘intermediate roving configuration’. In
Tab. 1, we therefore summarize the complete formulation by using the notation of the
covariant formulation of transverse isotropy.
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Table 1: Kinematics of viscoelastic rovings (transverse isotropy) for perfect roving-matrix interface.

Covariant roving basis vector Contravariant roving basis vector

(T.1.1) ā · ā =: Cv
F ā♭ =

1

Cv
F

ā ā♭ · ā = 1

Roving metric tensor (structural tensor) Roving right Cauchy-Green tensor

(T.1.2) ā = Ā ā Ā = ā⊗ ā♭ CF := F t
F F F = CF a♭

0 ⊗ a♭
0

Roving deformation gradients Inverse roving deformation gradients

(T.1.3) ā = F v
F a0 F v

F := ā⊗ a♭
0 f v

F F v
F = A0 f v

F := a0 ⊗ ā♭ F v
F f v

F = Ā

at = F e
F ā F e

F := at ⊗ ā♭ f e
F F e

F = Ā f e
F := ā⊗ a♭

t F e
F f e

F = gF

Roving push forward Roving pull back

(T.1.4) ā = F v
F · a0 ā♭ = [f v

F ]
t a♭

0 a0 = f v
F · ā a♭

0 = [F v
F ]

t ā♭

at = F e
F · ā a♭

t = [f e
F ]

t ā♭ ā = f e
F · at ā♭ = [F e

F ]
t a♭

t

Viscous roving deformation tensor Elastic roving deformation tensor

(T.1.5) ā · ā = a0 · [F
v
F ]

tF v
F · a0 =: a0 ·C

v
F · a0 at · at = ā · [F e

F ]
tF e

F · ā =: ā ·Ce
F · ā

Cv
F := Cv

F a♭
0 ⊗ a♭

0 Ce
F := CF ā♭ ⊗ ā♭

Inverse viscous roving deformation tensor Inverse elastic roving deformation tensor

(T.1.6) [Cv
F ]

−1Cv
F = A0 [Cv

F ]
−1 :=

1

Cv
F

a0 ⊗ a0 [Ce
F ]

−1Ce
F = Ā [Ce

F ]
−1 :=

1

CF

ā⊗ ā

Viscous roving invariant Elastic roving invariant

(T.1.7) I1(C
v
F ) := Cv

F : A0 ≡
Cv

F

GF

I1(C
e
F ) := Ce

F : Ā ≡ CF [Cv
F ]

−1 : A0 =
CF

Cv
F

2.3 Power-conjugated strain and stress tensors for rotational deformations

In Reference [7], the weak formulation is derived by using power-conjugated strain and
stress tensors. Therefore, we here define rotational strain rate tensors. We obtain the
rotation velocity gradient Ġα := γ̇i ⊗Gi which maps the tangent vector dX into the
differential rate vector dγ̇. A material rotation velocity gradient and a spatial rotation
velocity gradient, respectively, are then defined by

Lα := G−1
α Ġα lα := ĠαG

−1
α (11)

respectively. We arrive at a material curvature-twist rate tensor Dα := LtK + KLα

with the inner product 〈dx, dx〉g
α

by means of

.

dx · dγ = dX · K̇ · dX =: dX ·Dα · dX (12)

The corresponding spatial curvature-twist rate tensor is defined as the Lie-derivative

dα :=
(

lt + lα
)

gα =
✷

gα:= K̇ij g
i ⊗ gj (13)
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As next step, we derive the power-conjugated stress tensors. In view of the meaning of
the curvature-twist tensor K or the rotational metric tensor gα, respectively, we assume
a general rotational strain energy function ΨK(K), in analogy to an hyperelastic strain
energy function ΨM(C). After differentiating the rotational strain energy function ΨK(K)
with respect to time, we obtain the curvature-twist stress tensor

SK :=
∂ΨK

∂K
(14)

which is power-conjugated to the material curvature-twist rate tensor Dα = K̇. Bearing
in mind the definition of the curvature-twist tensor in Eq. (6), we arrive at the tensors

NK := Gα S
t
K PK := F SK (15)

to which we refer to as Piola-Kirchhoff curvature-twist stress tensor and Piola-Kirchhoff
couple stress tensor due to their power-conjugated relation to L := F−1 Ḟ and Lα,
respectively. Note that the Piola-Kirchhoff couple stress tensor PK possesses the same
tensorial basis as the first Piola-Kirchhoff stress tensor P . Finally, we take into account
that the spatial curvature-twist rate tensor in Eq. (13) represents the push forward of the
material curvature-twist rate tensor K̇. Therefore, we arrive at the ‘spatial tensors’

τ t
K := F N t

K ≡ F SK Gt
α µK := PK F t ≡ F SK F t (16)

Owing to the analogy with the well-known Kirchhoff stress tensor τ , we refer to τ t
K

as Kirchhoff curvature-twist stress tensor and to µK as Kirchhoff couple stress tensor.
Analogous to the Piola-Kirchhoff stress tensor τ , the Kirchhoff couple stress tensor µK

is defined with respect to the spatial basis vectors gi, i = 1, . . . , ndim.

2.4 The algorithmic stress tensor for rotational strain energy functions

An energy-consistent stress approximation can be derived as an extension of an objec-
tive stress tensor, which corrects the error in the gradient theorem of the strain energy
function. In Reference [10], a material stress tensor is considered, but in Reference [11]
is motivated, that the extension of a spatial stress tensor, and a subsequent pull back,
is more appropriate from a continuum mechanical point of view. We follow the latter
design procedure and extend an appropriate spatial rotational stress tensor. Thereby, we
assume the existence of an elastic strain energy function ΨK(K) for the rotational stress
tensors. An algorithmic stress tensor S̄K for an energy-momentum scheme ensures the
satisfaction of the internal potential energy balance by fulfilling the local equation

ΨK(K(X, tn+1))−ΨK(K(X, tn)) =

∫ tn+1

tn

Ψ̇K(K(X, t)) dt ≡

∫ 1

0

◦

ΨK (K(X, α)) dα (17)

with α(t) := (t− tn)/(tn+1 − tn) for any function ΨK(K) on each time step [tn, tn+1] or
normalized time interval [0, 1], respectively. We denote by a superimposed ◦ the derivative

7
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with respect to the normalized time α ∈ [0, 1]. The stress tensor S̄K(α) is determined by
means of a constrained variational problem associated with the Lagrange functional

FK(S̄K , λK) := λK GK(S̄K) +

∫ 1

0

FK(S̄K(α)) dα (18)

where the dependencies on X ∈ B0 have been omitted. The scalar-valued and time-
independent Lagrange multiplier λK enforces the constraint

GK(S̄K) := ΨK(K(tn+1))− ΨK(K(tn))−

∫ 1

0

GK(S̄K(α)) dα (19)

with

GK(S̄K) :=

[

S̄K +
∂ΨK(K)

∂K

]

:
◦

K (α) (20)

A crucial aspect is the choice of the least-squares function FK(S̄K). Here, we find different
possibilities [10, 11]. In the latter reference, the algorithmic stress is based on a least-
squares function with respect to a spatial stress measure in order to simulate with an
optimal ‘true stress’. We follow this approach and consider

FK :=
1

2
µ̄ij gi ⊗ gj : µ̄

kl gk ⊗ gl =
1

2
gki µ̄

ij µ̄kl glj =
1

2
g µ̄ : µ̄ g (21)

where µ̄ denotes an algorithmic Kirchhoff couple stress tensor, which is related by a pull
back operation with the actual algorithmic stress tensor S̄K . Therefore, we arrive at

FK(S̄K) :=
1

2
g · F S̄K F t : F S̄K F t · g =

1

2
C S̄K : S̄K C (22)

In contrast, Reference [11] reveals that the least-squares function corresponding to the
strain energy ΨM(C) is associated with an algorithmic Kirchhoff stress tensor τ̄ . The
important similarity to this work is the identical tensorial basis of µ̄ and τ̄ . The next step
is the functional minimization of the Lagrange functional in Eq. (18). The minimization
condition is given by the vanishing variational form

δ∗FK(S̄K , λK) ≡

∫ 1

0

C S̄K C : δ∗S̄K dα− λK

∫ 1

0

◦

K: δ∗S̄K dα + δ∗λK GK(S̄K) = 0 (23)

which leads to the Euler-Lagrange equations

C S̄K C = λK

◦

K GK(S̄K) = 0 (24)

The functional operator δ∗ also indicates a variation with respect to each field in the
argument list of a functional, here FK(S̄K , λK). We combine Eqs. (24) and arrive at the
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Figure 3: Fiber-reinforced pump rotor with nel = 2584 hexahedron elements H8 and ‘D1G1V0F0
H8’ space approximation: Current configuration at time tn = 3.0. The colors indicate the current
temperature. Blue arrows denote the applied boundary heat flux Q̄A (Vector information VTQPR-
LOW=00100000). A high heat conduction and temperature Dirichlet boundaries lead to a cool rotor.

tensor S̄K = λK C−1
◦

K C−1 with

λK =

ΨK(K(tn+1))− ΨK(K(tn))−

∫ 1

0

∂ΨK(K)

∂K
:

◦

K (α) dα

∫ 1

0

C−1
◦

K (α) :
◦

K (α)C−1 dα

(25)

This algorithmic stress tensor S̄K satisfies the gradient theorem in Eq. (17) for any time
step size hn := tn+1 − tn, so that the weak formulation in Reference [7] extended by
Eq. (25) furthermore satisfies each balance law in Reference [7].

3 NUMERICAL EXAMPLE

We show now the algorithmic energy-momentum consistency of S̄K by a simulation
with the 121-em-scheme in Reference [7]. This energy-momentum scheme is based on lin-
ear finite elements in time for mechanical state variables, quadratic finite elements in time
for temperature and entropy and also linear finite elements in time for viscous time evo-
lution variables. The used special mixed finite element formulation is called ‘D1G1V0F0
H8’ method, and consists of (i) tri-linear eight-noded hexahedron (H8) elements for the
deformation and rotation mapping (D1), (ii) extended linear tetrahedron (T4+) elements
for independent gradient fields (G1), and (iii) one-noded tetrahedron (T1) elements for
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independent volumetric strains (V0) and roving strains (F0). In the plot of the cur-
rent configuration in Fig. 3, we also provide vector fields by colored arrows denoted by
‘VTQPRLOW’. The label ‘V’ indicates the velocity field, ‘T’ denotes Neumann traction
loads, ‘Q’ designates Neumann heat fluxes, ‘P’ pressure follower loads, ‘R’ denotes Dirich-
let reaction forces, ‘L’ the Dirichlet heat fluxes, ‘O’ indicates the angular velocity field
and ‘W’ the torque vector field. We consider the pump rotor in Reference [4]. Each blade
of the rotor consists of a double-layered laminate. The directions of the rovings in each
blade are tangential to the surface of the blade and ‘crossed’ to each other. In the hub
and the chamfer, we assume rovings in tangential direction. The motion is completely
initiated by applied mechanical loads. The rotation mainly arises from the anti-clockwise
torque load W̄A

z = −Ŵz f(t) parallel to the z-axis in boundary nodes on the top of the
hub (see the definition of f(t) in Reference [7]). But, we also load the front of the blades
with a pressure follower load fp(t) := p̂ | sin(ωload,p t)|. As thermal Neumann load, we

introduce on the front of the blades an inward transient heat flux Q̄A = Q̂ f(t). On the
back of the blades and the bottom as well as the inner side of the hub, we prescribe a
constant ambient temperature Θ∞.

Fig. 4 demonstrates the energy-momentum consistency of S̄K by means of the errors
of the mechanical balance laws. Intra-processing balances represent convergence criteria
and are thus determined within the iteration loop. Post-processing balances are calculated
after terminating the global Newton-Raphson procedure by taking into account general-
ized reactions. The balance laws are therefore satisfied for each implemented boundary
condition. In the upper left plot, we show that the potential energy balance is fulfilled.
The axes are normalized by the prescribed Newton-Raphson tolerance TOL. In the right
column of Fig. 4, we show the fulfilled linear and angular momentum balances. The angu-
lar momentum balance includes the spin angular momentum associated with the internal
rotational degrees of freedom.

4 CONCLUSIONS

An extended continuum formulation is derived by a mixed finite element formulation
which introduces internal rotational degrees of freedom by the Hu-Washizu method. In
this way, a local rotational stiffness is introduced by an additional strain energy function.
This formulation allows the material modelling of fiber-reinforced materials based on
rovings. An algorithmic stress tensor in the sense of References [10, 11] demands a detailed
specification of the corresponding kinematic formulation. Therefore, we start with a
covariant formulation with respect to curvilinear coordinates. In this way, we show that
the internal rotational degrees of freedom are associated with a metric tensor for rotational
deformations. The summarized numerical example demonstrates the algorithmic energy-
momentum consistency of the new couple stress approximation.

10
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Figure 4: Fiber-reinforced pump rotor with nel = 2584 hexahedron elements H8 and ‘D1G1V0F0 H8’
space approximation: Error of mechanical balance laws in the time interval [0 4.0].
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