

Groß M., Dietzsch J. and Kalaimani I.

Introduction Motivation and goals Gradient material Principle of virtual powe

I NEORY & NUMERICS Anisotropy & length scales Covariant formulation Consistent time integration Couple stress approximation Dynamical formulation Numerical studies Theory and numerics of a noval non-isothermal constrained micropolar continuum formulation derived by a mixed principle of virtual power

Groß M., Dietzsch J. and Kalaimani I.

Professorship of Applied Mechanics and Dynamics

Faculty of Mechanical Engineering

ACEX 2021 (hybrid event) 04-08 July, 2021 Acknowledgment: This research is provided by **DFG** under the grant GR 3297

Motivation: roving-matrix composite simulation

Theory and numerics of a nova non-isothermal constrained micropolar continuum formulation derived by a mixed principle of virtual power

Groß M., Dietzsch J. and Kalaimani I.

Motivation and goals

Background: Roving-matrix composite parts in rotordynamics

Kai Uhlig [2017]

Modelling: The need for macroscopic formulations with length scales

Goal: FEM taking into account length scales in anisotropic continuum formulations We design dynamic mixed FE methods for higher gradient materials with length scales

Overview about gradient material formulations

(see e.g. Spencer & Soldatos [2007], Askes & Aifantes [2011], Madeo et al. [2015], Asmanoglo & Menzel [2017], Ferretti et al. [2014])

Groß M., Dietzsch J. and Kalaimani I.

Introduction Motivation and goals Gradient material Principle of virtual power

Theory & numerics Anisotropy & length scales Covariant formulation Couple stress approximation Dynamical formulation Numerical studies Summary

Principle of virtual power and time integration Application example: Quasi-static analysis with dynamic load

Path-independent time integration (motivated by Betsch & Steinmann [2002], Armero [2008]) Preservation of balance law of potential energy $\mathcal{H}_t := \Pi^{\mathrm{int}}(\boldsymbol{C}_t) + \Pi^{\mathrm{ext}}(\boldsymbol{\varphi}_t, \boldsymbol{C}_t)$ $\mathcal{H}_{t_{n+1}} - \mathcal{H}_{t_n} = \int_{t}^{t_{n+1}} \left\{ \int_{\mathscr{A}} \frac{\partial \Psi}{\partial C_t} : \dot{C}_t \, \mathrm{d}V \, \mathrm{d}t + \left| \int_{\mathscr{A}} \frac{\tilde{T}}{\mathscr{A}}(t) \cdot \dot{\varphi}_t \, \mathrm{d}A + \frac{1}{2} \int_{\mathscr{A}} \frac{\tilde{S}(t)}{\mathscr{A}}(t) : \dot{C}_t \, \mathrm{d}V \right| \right\} \, \mathrm{d}t$ 2 Algorithmic stress $\bar{S}(t)$ corrects a material non-linearity in $\Psi(Y_1, \ldots, Y_n)$ Independent time evolution variables \tilde{Y}_i correct geometric non-linearities in Y_i $\Pi_{t_{n+1}}^{\text{int}} - \Pi_{t_n}^{\text{int}} = \int_{t}^{t_{n+1}} \dot{\Pi}^{\text{int}} \left(\dot{\hat{\mathbf{Y}}}_1, \dots, \dot{\hat{\mathbf{Y}}}_n \right) \, \mathrm{d}t - \sum_{i=1}^{n} \int_{t_n}^{t_{n+1}} \int_{\mathscr{B}_n} \tilde{\mathbf{Z}}_i \odot \left[\dot{\hat{\mathbf{Y}}}_i - \dot{\mathbf{Y}}_i \right] \, \mathrm{d}V \, \mathrm{d}t$ Mixed principle of virtual power (cf. Schröder & Kuhl [2015]) $\int_{-}^{t_{n+1}} \delta_* \dot{\mathcal{H}} \left(\dot{\boldsymbol{\varphi}}_t, \dot{\tilde{\boldsymbol{C}}}_t, \tilde{\boldsymbol{S}}_t \right) \, \mathrm{d}t = 0 \quad \text{with } \dot{\boldsymbol{\varPi}}^{\mathrm{int}} := \int_{-\infty}^{-} \left\{ \dot{\boldsymbol{\varPsi}}(\tilde{\boldsymbol{C}}_t) - \frac{1}{2} \dot{\boldsymbol{S}}_t : \left[\dot{\tilde{\boldsymbol{C}}}_t - \overline{\boldsymbol{F}}_t^\top \overline{\boldsymbol{F}}_t \right] \right\} \mathrm{d}\boldsymbol{V}$ Space-time weak forms $\int_{t_n}^{t_{n+1}} \int_{\mathscr{B}_0} \delta_* \dot{\tilde{C}}_t : \left[2 \frac{\partial \Psi}{\partial \tilde{C}_t} + \bar{S}(t) - \tilde{S}_t \right] \mathrm{d}V \,\mathrm{d}t = 0 = \int_{t_n}^{t_{n+1}} \int_{\mathscr{B}_0} \delta_* \tilde{S}_t : \frac{1}{2} \left[\dot{\tilde{C}}_t - \overline{F_t^T} \overline{F}_t \right] \mathrm{d}V \,\mathrm{d}t$ $\int_{t}^{t_{n+1}} \int_{\mathscr{R}_{r}} \boldsymbol{F}_{t} \, \tilde{\boldsymbol{S}}_{t} : \operatorname{Grad}[\delta_{*} \dot{\boldsymbol{\varphi}}_{t}] \, \mathrm{d}V \, \mathrm{d}t \quad = \quad \int_{t}^{t_{n+1}} \int_{\partial_{\infty}} \mathcal{\bar{\boldsymbol{R}}}_{t}(t) \cdot \delta_{*} \dot{\boldsymbol{\varphi}}_{t} \, \mathrm{d}A \, \mathrm{d}t$

Anisotropy with rotational degrees of freedom

Theory and numerics of a noval non-isothermal constrained micropolar continuum formulation derived by a mixed principle of virtual power

Groß M., Dietzsch J. and Kalaimani I.

Introduction Motivation and goals Gradient material

Principle of virtual power

Theory & numerics Anisotropy & length scales

Covariant formulation Consistent time integration Couple stress approximation Dynamical formulation Numerical studies

Summary

Kinematics with rotational degrees of freedom

Curvilinear setting Configurations (motivated by Wriggers [2008]) Theory and numerics of a noval Deformation mapping non-isothermal φ, $\frac{\partial \varphi(\boldsymbol{X}(\boldsymbol{\xi}), t)}{\partial \varepsilon_{i}} =: \boldsymbol{g}_{j}$ constrained micropolar continuum Rotation mapping formulation derived by a mixed $\frac{\partial \boldsymbol{\alpha}(\boldsymbol{X}(\boldsymbol{\xi}),t)}{\partial \boldsymbol{\xi}^{j}} =: \boldsymbol{\gamma}_{\boldsymbol{j}}$ principle of virtual power Groß M., Dietzsch $\boldsymbol{\gamma}_i := \alpha_{i}^k \boldsymbol{g}_k$ J. and Kalaimani I. Covariant formulation (cf. Eringen [1967]) (1)Metric coefficients for translations and local rotations $g_{ij} := \boldsymbol{g}_i \cdot \boldsymbol{g}_j \quad \boldsymbol{g}_j = g_{ij} \, \boldsymbol{g}^i \qquad K_{ij} := \boldsymbol{g}_i \cdot \boldsymbol{\gamma}_j \quad \boldsymbol{\gamma}_j = K_{ij} \, \boldsymbol{g}^i$ Deformation/rotation gradient $\boldsymbol{F} = \frac{\partial \boldsymbol{\varphi}}{\partial \boldsymbol{Y}} = \boldsymbol{g}_{j} \otimes \boldsymbol{G}^{j} \qquad \boldsymbol{g}_{j} = \boldsymbol{F} \boldsymbol{G}_{j} \qquad \boldsymbol{G}_{\alpha} = \frac{\partial \boldsymbol{\alpha}}{\partial \boldsymbol{Y}} = \boldsymbol{\gamma}_{j} \otimes \boldsymbol{G}^{j} \qquad \boldsymbol{\gamma}_{j} = \boldsymbol{G}_{\alpha} \boldsymbol{G}_{j}$ Covariant formulation Line stretch and local curvature-twist $\mathrm{d} \boldsymbol{x} \cdot \boldsymbol{g} \cdot \mathrm{d} \boldsymbol{x} = \boldsymbol{d} \boldsymbol{X} \cdot \boldsymbol{C} \cdot \mathrm{d} \boldsymbol{X} \quad \boldsymbol{C} = \boldsymbol{F}^T \boldsymbol{g} \boldsymbol{F}$ $\mathrm{d} \boldsymbol{x} \cdot \boldsymbol{g}_{\alpha} \cdot \mathrm{d} \boldsymbol{x} = \boldsymbol{d} \boldsymbol{X} \cdot \boldsymbol{K} \cdot \mathrm{d} \boldsymbol{X} \qquad \boldsymbol{K} = \boldsymbol{F}^T \boldsymbol{g}_{\alpha} \boldsymbol{F}$ Metric tensors $\boldsymbol{g} := rac{\partial \boldsymbol{\varphi}}{\partial \boldsymbol{\pi}} \equiv \boldsymbol{g}_j \otimes \boldsymbol{g}^j = g_{ij} \, \boldsymbol{g}^i \otimes \boldsymbol{g}^j$ $\boldsymbol{g}_{\boldsymbol{\alpha}} := rac{\partial \boldsymbol{\alpha}}{\partial \boldsymbol{x}} \equiv \boldsymbol{\gamma}_{j} \otimes \boldsymbol{g}^{j} = K_{ij} \, \boldsymbol{g}^{i} \otimes \boldsymbol{g}^{j}$

Covariant kinematics of roving deformations

Theory and numerics of a noval constrained micropolar continuum formulation derived by a mixed principle of virtual power

Groß M., Dietzsch J. and Kalaimani I.

ntroduction Motivation and goals Gradient material Principle of virtual powe

Theory & numerics Anisotropy & length scales Covariant formulation

Consistent time integration Couple stress approximation Dynamical formulation

Numerical studies Summary

Tensor invariants as roving deformation indicators

Translational deformation indicators for stretch and distorsion

$$I_1(C_A) := C_A : G^{-1} \equiv I_4(C, a_0)$$
 $J_2(C_A) := C_A : C_A \equiv J_5(C, a_0)$

Rotational deformation indicators for twist and curvature (bending)

$$I_1(\mathbf{K}_F) := \mathbf{K}_F : \mathbf{G}^{-1} =: T_F$$
 $J_2(\mathbf{K}_F) := \mathbf{K}_F : \mathbf{K}_F =: \frac{B_F}{2}$

Consistent time integration of the local rotations

Theory and numerics of a noval non-isothermal constrained micropolar continuum formulation derived by a mixed principle of virtual power

Groß M., Dietzsch J. and Kalaimani I.

Introduction Motivation and goals Gradient material Principle of virtual powe

Theory & numerics Anisotropy & length scales Covariant formulation Couple stress approximation Dynamical formulation Numerical studies

Path-independence with linear stress (geometric non-linearity)

$$\dot{\Pi}_{rot}^{con} := \dot{\Pi}_{rot} + \int_{\mathscr{B}_0} \frac{\partial \Psi_K}{\partial \tilde{K}_t} : \dot{\tilde{K}}_t \, dV - \int_{\mathscr{B}_0} \tilde{S}_{K_t} : \left[\dot{\tilde{K}}_t - \overline{F}_t^T \overline{G}_{\alpha_t}\right] dV$$
Path-independence with non-linear stress (material non-linearity)

$$\dot{\Pi}_{rot}^{ext}(\dot{\alpha}_t, \dot{K}_t) := \int_{\partial_W} \overline{\mathcal{W}}(t) \cdot \dot{\alpha} \, dA + \int_{\mathscr{B}_0} \bar{S}_K(t) : \dot{\tilde{K}}_t \, dV$$
Modified/additional weak forms in the quasi-static case

$$\int_{t_n}^{t_{n+1}} \int_{\mathscr{B}_0} \left[F_t \tilde{S}_t + \overline{G}_{\alpha_t} \tilde{S}_{K_t}^T + \tilde{\tau}_{skw}^T : \mathbb{P}^{sw} \cdot F_t^{-T} \right] : \operatorname{Grad}[\delta_* \dot{\varphi}_t] \, dV \, dt = \int_{t_n}^{t_{n+1}} \int_{\partial_W} \overline{\mathcal{Q}}(t) \cdot \delta_* \dot{\varphi}_t \, dA \, dt$$

$$\int_{t_n}^{t_{n+1}} \int_{\mathscr{B}_0} \overline{F}_t \tilde{S}_{K_t} : \operatorname{Grad}[\delta_* \dot{\alpha}_t] \, dV \, dt + \int_{t_n}^{t_{n+1}} \int_{\mathscr{B}_0} \tilde{\tau}_{skw}^T : \epsilon \cdot \delta_* \dot{\alpha}_t \, dV \, dt = \int_{t_n}^{t_{n+1}} \int_{\partial_W} \overline{\mathcal{W}}(t) \cdot \delta_* \dot{\alpha}_t \, dA \, dt$$

$$\int_{t_n}^{t_{n+1}} \int_{\mathscr{B}_0} \delta_* \dot{K}_t : \left[\frac{\partial \Psi_K}{\partial K_t} + \tilde{S}_K(t) - \tilde{S}_{K_t} \right] \, dV \, dt = 0 = \int_{t_n}^{t_{n+1}} \int_{\mathscr{B}_0} \delta_* \tilde{S}_{K_t} : \left[\dot{K}_t - \overline{F}_t^T \overline{G}_{\alpha_t} \right] \, dV \, dt$$
Material and two-point stress tensors 'Spatial' stress tensors

 $\boldsymbol{\tau}_{K}^{T} := \boldsymbol{F} \boldsymbol{N}_{K}^{T} \quad \boldsymbol{\mu}_{K} := \boldsymbol{P}_{K} \boldsymbol{F}^{T}$

$$\boldsymbol{S}_K := rac{\partial \varPsi_K}{\partial \boldsymbol{K}} \quad \boldsymbol{N}_K := \boldsymbol{G}_{lpha} \, \boldsymbol{S}_K^T \quad \boldsymbol{P}_K := \boldsymbol{F} \, \boldsymbol{S}_K$$

Path-independence couple stress approximation

Theory and numerics of a noval constrained micropolar continuum formulation derived by a mixed principle of virtual power

Groß M., Dietzsch J. and Kalaimani I.

Introduction Motivation and goals Gradient material Principle of virtual powe

Theory & numerics Anisotropy & length scales Covariant formulation Consistent time integration Couple stress approximation Dynamical formulation

Summary

$$\Psi_{K}(\tilde{\boldsymbol{K}}_{t_{n+1}}) - \Psi_{K}(\tilde{\boldsymbol{K}}_{t_{n}}) = \int_{t_{n}}^{t_{n+1}} \dot{\Psi}_{K}(\tilde{\boldsymbol{K}}_{t}) \, \mathrm{d}t \equiv \int_{0}^{t_{0}} \Psi_{K}(\tilde{\boldsymbol{K}}_{\alpha}) \, \mathrm{d}\alpha$$

Separate constrained variational problem for 'system input' $ar{m{S}}_K(lpha)$

$$\mathcal{F}_{K}(\bar{\boldsymbol{S}}_{K}(\alpha),\lambda_{K}) := \lambda_{K} \mathcal{G}_{K}(\bar{\boldsymbol{S}}_{K}(\alpha)) + \int_{0}^{1} F_{K}(\bar{\boldsymbol{S}}_{K}(\alpha)) \,\mathrm{d}\alpha \stackrel{!}{=} \mathsf{extr}$$

Path independence condition as local stress constraint

$$\mathcal{G}_{K}(\bar{\boldsymbol{S}}_{K}(\alpha)) := \Psi_{K}(\tilde{\boldsymbol{K}}_{t_{n+1}}) - \Psi_{K}(\tilde{\boldsymbol{K}}_{t_{n}}) - \int_{0}^{1} \left[\bar{\boldsymbol{S}}_{K}(\alpha) + \frac{\partial \Psi_{K}(\tilde{\boldsymbol{K}}_{\alpha})}{\partial \tilde{\boldsymbol{K}}_{\alpha}} \right] : \overset{\circ}{\boldsymbol{K}}_{\alpha} \, \mathrm{d}\alpha$$

Minimization function

$$F_K(\bar{\boldsymbol{S}}_K(\alpha)) := \frac{1}{2} \boldsymbol{g} \, \bar{\boldsymbol{\mu}}_K : \bar{\boldsymbol{\mu}}_K \boldsymbol{g} \equiv \frac{1}{2} \boldsymbol{C}_\alpha \, \bar{\boldsymbol{S}}_K(\alpha) : \bar{\boldsymbol{S}}_K(\alpha) \, \boldsymbol{C}_\alpha$$

Algorithmic couple stress tensor Couple stress multiplier

$$\bar{\boldsymbol{S}}_{K}(\alpha) := \lambda_{K} \, \tilde{\boldsymbol{C}}_{\alpha}^{-1} \stackrel{\circ}{\tilde{\boldsymbol{K}}}_{\alpha} \, \tilde{\boldsymbol{C}}_{\alpha}^{-}$$

$$\lambda_{K} = \frac{\mathcal{G}_{K}(\boldsymbol{O})}{\int_{0}^{1} \tilde{\boldsymbol{C}}_{\alpha}^{-1} \stackrel{\circ}{\tilde{\boldsymbol{K}}}_{\alpha} : \overset{\circ}{\boldsymbol{K}}_{\alpha} \tilde{\boldsymbol{C}}_{\alpha}^{-1} \, \mathrm{d}\alpha}$$

Dynamical formulation with inertia effects

Theory and numerics of a noval non-isothermal constrained micropolar continuum formulation derived by a mixed principle of virtual power

Groß M., Dietzsch J. and Kalaimani I.

Introduction Motivation and goals Gradient material Principle of virtual powe

Anisotropy & length scales Covariant formulation Consistent time integration Couple stress approximation Dynamical formulation Numerical studies

Summary

otal energy with kinetic energy from local rotations

$$\mathcal{H} := \mathcal{T}^{\text{tra}} + \mathcal{T}^{\text{rot}} + \Pi^{\text{int}}$$
otal kinetic energy
? Translational kinetic energy

$$\mathcal{T}^{\text{tra}}(\dot{\boldsymbol{\varphi}}, \boldsymbol{v}, \boldsymbol{p}) := \frac{1}{2} \int_{\mathscr{B}_0} \boldsymbol{v} \cdot [\rho_0 \, \boldsymbol{I}] \, \boldsymbol{v} \, dV - \int_{\mathscr{B}_0} [\boldsymbol{v} - \dot{\boldsymbol{\varphi}}] \cdot \boldsymbol{p} \, dV$$
? Rotational kinetic energy

$$\mathcal{T}^{\text{rot}}(\dot{\boldsymbol{\alpha}}, \boldsymbol{\omega}, \pi) := \frac{1}{2} \int_{\mathscr{B}_0} \boldsymbol{\omega} \cdot \boldsymbol{J} \boldsymbol{\omega} \, dV - \int_{\mathscr{B}_0} [\boldsymbol{\omega} - \dot{\boldsymbol{\alpha}}] \cdot \pi \, dV$$
VE with roving
Inertia density tensor of a roving (cf. Zhilin [2000]
Inertia density in the RVE coordinate system

lo

 $\boldsymbol{J} = J_F \, \boldsymbol{a}_0 \otimes \boldsymbol{a}_0 + J_1 \, \boldsymbol{a}_1 \otimes \boldsymbol{a}_1 + J_2 \, \boldsymbol{a}_2 \otimes \boldsymbol{a}_2$

Transverse isotropy
$$(J_1 = J_2 =:
ho_0 (l_0)^2)$$

$$\boldsymbol{J} = \rho_0 \left(l_F \right)^2 \boldsymbol{A}_0 + \rho_0 \left(l_0 \right)^2 \left[\boldsymbol{I} - \boldsymbol{A}_0 \right]$$

$$oldsymbol{a}_1\otimesoldsymbol{a}_1+oldsymbol{a}_2\otimesoldsymbol{a}_2=oldsymbol{I}-oldsymbol{A}_0\qquad J_F:=oldsymbol{
ho}_0\,(oldsymbol{l}_F)^2$$

Groß M., Dietzsch J. and Kalaimani I.

Introduction Motivation and goals Gradient material Principle of virtual powe

I heory & numerics Anisotropy & length scales Covariant formulation Consistent time integration Couple stress approximation Dynamical formulation

Numerical studies

Summary

Turbomolecular pump rotor under dynamic loads (Boundary and initial conditions I; 121-em with H8-mixed-Bbar)

Boundary conditions on the top side

Dirichlet and Neumann boundaries on the top side

Yellow patches: cooling with fixed temperature $\Theta = \Theta_{\infty} = 298.15$ Green patches: insulation $\bar{Q}^A := 0$ and torque load $W_z^A = -\hat{W}^A(t)$

Groß M., Dietzsch J. and Kalaimani I.

Introduction Motivation and goals Gradient material Principle of virtual powe

Theory & numerics Anisotropy & length scales Covariant formulation Consistent time integration Couple stress approximation Dynamical formulation

Numerical studies

Summary

Turbomolecular pump rotor under dynamic loads (Boundary and initial conditions II; 121-em with H8-mixed-Bbar)

Boundary conditions on the bottom side

Dirichlet and Neumann boundaries on the bottom side

Initial conditions

$$\boldsymbol{\varphi}_0^A = \boldsymbol{X}^A \quad \boldsymbol{\alpha}_0^A = \boldsymbol{0} \quad \boldsymbol{v}_0^A = \boldsymbol{0} \quad \boldsymbol{\omega}_0^A = \boldsymbol{0} \quad \boldsymbol{\Theta}_0^A = \boldsymbol{\Theta}_{\infty} \quad \eta_0^A = \boldsymbol{0} \quad \boldsymbol{\tau}_{\mathrm{skw}}^A = \boldsymbol{O}$$

Groß M., Dietzsch J. and Kalaimani I.

Introduction Motivation and goals Gradient material Principle of virtual powe

Anisotropy & numerics Anisotropy & length scales Covariant formulation Consistent time integration Couple stress approximation Dynamical formulation

Numerical studies

Summary

Turbomolecular pump rotor under dynamic loads (Roving distribution; 121-em with H8-mixed-Bbar)

Roving direction field at Gauss points in space

Roving direction fields

Rotor blades: two layers with diagonal rovings (crossed) Rotor hub : rovings in tangential direction (see motivation)

Groß M., Dietzsch J. and Kalaimani I.

Introduction Motivation and goals Gradient material Principle of virtual powe

Anisotropy & numerics Anisotropy & length scales Covariant formulation Consistent time integration Couple stress approximation Dynamical formulation

Numerical studies

Summary

Turbomolecular pump rotor under dynamic loads (Loads and generalized reactions; 121-em with H8-mixed-Bbar)

Time evolutions of applied loads and generalized reactions

Groß M., Dietzsch J. and Kalaimani I.

Introduction Motivation and goals Gradient material Principle of virtual pow

Anisotropy & length scales Covariant formulation Consistent time integration Couple stress approximation Dynamical formulation

Numerical studies

Summary

Turbomolecular pump rotor under dynamic loads (Illustration of roving deformation; hand with mouse cord)

Movie of the roving deformation

Groß M., Dietzsch J. and Kalaimani I.

Introduction Motivation and goals Gradient material Principle of virtual pow

Anisotropy & length scales Covariant formulation Consistent time integration Couple stress approximation Dynamical formulation

Numerical studies

Summary

Turbomolecular pump rotor under dynamic loads (Current configurations I; 121-em with H8-mixed-Bbar)

Movie of simulated motion with circumferential elongation as color

Groß M., Dietzsch J. and Kalaimani I.

Introduction Motivation and goals Gradient material Principle of virtual powe

Theory & numerics Anisotropy & length scales Covariant formulation Consistent time integration Couple stress approximation Dynamical formulation

Numerical studies

Summary

Turbomolecular pump rotor under dynamic loads (Current configurations II; 121-em with H8-mixed-Bbar)

Current temperature and heat load arrows at $t_n = 3.0 \, \mathrm{s}$

Groß M., Dietzsch J. and Kalaimani I.

Introduction Motivation and goals Gradient material Principle of virtual powe

Theory & numerics Anisotropy & length scales Covariant formulation Consistent time integration Couple stress approximation Dynamical formulation

Numerical studies

Summary

Turbomolecular pump rotor under dynamic loads (Current configurations III; 121-em with H8-mixed-Bbar)

Rate of roving bending and torque load arrows at $t_n = 2.2 \,\mathrm{s}$

Groß M., Dietzsch J. and Kalaimani I.

Introduction Motivation and goals Gradient material Principle of virtual powe

Anisotropy & numerics Anisotropy & length scales Covariant formulation Consistent time integration Couple stress approximation Dynamical formulation

Numerical studies

Summary

Turbomolecular pump rotor under dynamic loads (Current configurations IV; 121-em with H8-mixed-Bbar)

Twist rate of roving and pressure load arrows at $t_n=2.2\,{
m s}$

Turbomolecular pump rotor under dynamic loads (Time evolutions I; 121-em with H8-mixed-Bbar)

Theory and numerics of a noval constrained micropolar continuum formulation derived by a mixed principle of virtual power

Groß M., Dietzsch J. and Kalaimani I.

Introduction Motivation and goals Gradient material Principle of virtual powe

Anisotropy & numerics Anisotropy & length scales Covariant formulation Consistent time integration Couple stress approximation Dynamical formulation

Numerical studies

Summary

Solutions over time at space node A = 5198

Turbomolecular pump rotor under dynamic loads (Time evolutions II; 121-em with H8-mixed-Bbar)

Theory and numerics of a noval non-isothermal constrained micropolar continuum formulation derived by a mixed principle of virtual power

Groß M., Dietzsch J. and Kalaimani I.

Introduction Motivation and goals Gradient material Principle of virtual powe

Anisotropy & Infinences Anisotropy & length scales Covariant formulation Consistent time integration Couple stress approximation Dynamical formulation

Numerical studies

Summary

Energies and momenta over time

Groß M., Dietzsch J. and Kalaimani I.

Introduction Motivation and goals Gradient material Principle of virtual powe

I neory & numerics Anisotropy & length scales Covariant formulation Consistent time integration Couple stress approximation Dynamical formulation

Numerical studies

Summary

Turbomolecular pump rotor under dynamic loads (Roving distribution radial; 121-em with H8-mixed-Bbar)

Roving direction field at Gauss points in space

Roving direction fields

Rotor blades: two layers with diagonal rovings (crossed) Rotor hub : rovings in radial direction (see motivation)

Groß M., Dietzsch J. and Kalaimani I.

Introduction Motivation and goals Gradient material Principle of virtual pow

Anisotropy & numerics Anisotropy & length scales Covariant formulation Consistent time integration Couple stress approximation Dynamical formulation

Numerical studies

Summary

Turbomolecular pump rotor under dynamic loads (Current configurations radial-I; 121-em with H8-mixed-Bbar)

Movie of simulated motion with circumferential elongation as color

Groß M., Dietzsch J. and Kalaimani I.

Introduction Motivation and goals Gradient material Principle of virtual powe

Theory & numerics Anisotropy & length scales Covariant formulation Consistent time integration Couple stress approximation Dynamical formulation

Numerical studies

Summary

Turbomolecular pump rotor under dynamic loads (Current configurations radial-II; 121-em with H8-mixed-Bbar)

Rate of roving bending and torque load arrows at $t_n = 1.4993 \, \mathrm{s}$

Groß M., Dietzsch J. and Kalaimani I.

Introduction Motivation and goals Gradient material Principle of virtual powe

Anisotropy & Humenus Anisotropy & length scales Covariant formulation Consistent time integration Couple stress approximation Dynamical formulation

Numerical studies

Summary

Turbomolecular pump rotor under dynamic loads (Current configurations radial-III; 121-em with H8-mixed-Bbar)

Twist rate of roving and pressure load arrows at $t_n = 1.4993 \,\mathrm{s}$

Summary

Theory and numerics of a noval non-isothermal constrained micropolar continuum formulation derived by a mixed principle of virtual power

Groß M., Dietzsch J. and Kalaimani I.

Introduction Motivation and goals Gradient material Principle of virtual po

Anisotropy & numerics Anisotropy & length scales Covariant formulation Consistent time integration Couple stress approximation Dynamical formulation

Numerical studies

Summary

- Dynamic finite element simulations of fiber roving composites
- Extension of transverse isotropy with length scale parameters
- Goals: FE simulations which
 - take into account the roving diameter and spacing,
 - roving stiffness with respect to curvature and twist.
- Strategy:
 - Introduction of a mixed field for the gradient of rotation
 - Discretization by using a mixed principle of virtual power
- Results: Length scales for
 - roving diameter/spacing in the kinetic energy density
 - roving torsional/flexural stiffness in the strain energy
- Outlook:
 - Material optimization in order to reduce the start-up vibrations
 - Identification of length scale parameters using mesoscale models