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Multiscale time @ Finite difference methods in time (partitioned strategy)
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© Finite element methods in time (monolithic strategy)
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e = S ' ' erent time step sizes

'8 Mul u > Liu [19 i, B [1996].
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i > Semi-implicit time integration of non-uniform meshes

energy-momentum L
consistent TFEM > nodal partitioning

© Finite difference methods in time!

Michael GroB > element partitioning

> Mixed time integration (field partitioning) of

> area and boundary coupled problems

Literature

> problems with inelastic media
> Multiple timescale problems

© Finite element methods in time?
> Space-time Galerkin methods

> solid mechanics
> fluid flow problems
> area and boundary coupled field problems

> Time-discontinuous least squares methods in fluid flow problems

> Multiple timescale problems
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of dissipative @ Stability estimate of the relative total energy

thermodynamics
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integration @ Continuous finite elements in space
of dissipative
thermodynamics
with
- t . . . .
Ao » Continuous for hyperbolic evolution equations

@ Continuous and discontinuous finite elements in time

> Continuous for local evolution equations
> Discontinuous for parabolic evolution equations

© Nodal approximations of strain and entropy

Mmec Mthe
Cy:= Z Mjee(t) Cy, Ny = Z M (t)ne,
=1 J=1

@ Enhanced stress and entropy production approximations
E;ot,b — Eghy,b + Ezlg,b D;Ot — Dphy + D?Ig

@ Advantanges

> Stability as energy-consistent time stepping schemes
> Higher order accuracy as standard Galerkin methods

Q@ ...but depends on the considered physical problem
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@ Deformation and strain measures

1
F; := GRAD[p,] C,:=[F)"F, B, = [Ci—1]

© Piola/Mandel stress tensor

Oy

St :280 E?: CtSt
@ Stress power & deformation rate tensor
P =30 L} L= - 0;100
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© Elastic metric tensor
O = [P T C P
@ Elastic invariants

elv .
Fy I(CM) =3(C,[CFF) )
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© Viscous internal variable

C;/is — [F;/is,b} TF;/is

@ Viscous evolution equation

% = naim Vepn SPH([LYSHT) + 2 Ve, DEV([LYSHT)

© Viscous dissipation/rate tensor

8 CVIS

) is 1
Dy =30 L™ >0 L =[OV
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@ Fourierian isotropic heat conduction law

q, = —ko (J: F)~TGraD[0/] Q,:=J:F'q,
© Specific heat capacity & thermal expansion
oy 1 ODET[FY] _
=:c> >
b1 96 = c=0 Nam 00 20

@ Thermal dissipation

D§d = —GRraAD[In64] - Q, > 0
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Multiscale time

ey @ Method 1: Lo-projection of the right Cauchy-Green tensor
of dissipative
thermodynamics » Entropy approximation at the thermal nodes
with
energy-momentum L 81/1(‘915,7 CtJ)
consistent TFEM Nty + - 89
Michael Grof » Right Cauchy-Green tensor at the thermal nodes
Mmec Mthe
Z Mmec tK Ct1 Z Mthe tK)CtJ
I=1

J=1
., Mine (thermal quadrature points)
@ Method 2: Ly-projection of the entropy density

mi‘e o0, [&p( 40 1)

+ 13 } wg =0
= Ot 00 .

© Discrete Lo-projection in time

where i, K =1,..

Entropy approximation
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The stability study
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Technische

Multiscale time ) ) ) i
integration @ Goal: A stable Galerkin-based time integration method
of dissipative
thermodynamics > take into account different time scales
with . Sy .
TR > despite of a monolithic solution strategy

consistent TFEM
@ Algorithmic basis: The Galerkin-based ehG method

> energy-momentum consistent

Michael GroB

> higher-order accurate
> more stable as standard methods
© Algorithmic upgrade: Multiscale time integration

> projected entropy approximation (method 1 or method 2)
> method 1 includes the original ehG method
> both projections show here comparable accuracy and stability

@ Results: Multiscale time integration with ehG(kmec, Kthe, Kvis)

> is able to increase its accuracy order
> decrease its computational cost (prescribed accuracy)

Summary and

Outlook > improve its stability (compared to the original ehG(k) method)

@ Outlook: A stable adaptive time integration method !
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