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Multiscale time integration in coupled problems
Felippa & Park [2004], Markovic et al. [2005], Matthies, Niekamp & Steindorf [2006], Kassiotis, Colliat, Ibrahimbegovic & Matthies [2009]

1 Finite difference methods in time (partitioned strategy)

t

t

tn

tn tn+1

tn+1

tn+1/2

tn+1/2

tn+1/4 tn+3/4

︸ ︷︷ ︸

︷ ︸︸ ︷
∆t

mec
∆t

the

internal time points

synchronisation points

mechanical residual

thermal residual

︸ ︷︷ ︸
∆T

(see Kassiotis, Colliat, Ibrahimbegovic & Matthies [2009])

2 Finite element methods in time (monolithic strategy)
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Simulation with different time step sizes
1 Belytschko & Mullen [1978], Hughes & Liu [1978], Park & Housner [1982], Liu [1983], Smolinski, Belytschko & Neal [1988], Smollinski, Sleith & Belytschko [1996], Smollinski & Wu [1998,2000],

Felippa, Park & Farhat [2001], Gravouil & Combescure [2001], Marsden & West [2001], Rugonyi & Bathe [2001], Ibrahimbegovic & Markovic [2003], Ober-Blöbaum & Leyendecker [2011]
2 Hughes & Hulbert [1988], Masud & Hughes [1997], Bottasso [2002], Larsson, Hansbo & Runesson [2003], Hübner, Walhorn & Dinkler [2004], Michler, Hulshoff, van Brummelen & de Borst [2004],

Hansbo, Hermannsson & Svedberg [2004], Tezduyar, Sathe, Schwaab & Conklin [2008]

1 Finite difference methods in time1

◮ Semi-implicit time integration of non-uniform meshes

◮ nodal partitioning

◮ element partitioning

◮ Mixed time integration (field partitioning) of

◮ area and boundary coupled problems

◮ problems with inelastic media

◮ Multiple timescale problems

2 Finite element methods in time2

◮ Space-time Galerkin methods

◮ solid mechanics

◮ fluid flow problems

◮ area and boundary coupled field problems

◮ Time-discontinuous least squares methods in fluid flow problems

◮ Multiple timescale problems
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Energy-consistent finite element method in time
French & Schaeffer [1990], Betsch & Steinmann [2000,2001], Larson & Niklasson [2001], Hansbo [2001], Betsch & Steinmann [2002], Cockburn [2003], G. [2004],

G., Betsch & Steinmann [2005], Bui [2007], Mohr, Menzel & Steinmann [2008], Bargmann [2008], G. [2009], G. & Betsch [2010,2011]

1 Stability estimate of the relative total energy

dH(t)

dt
=

∫

B0

θ∞
θt

D
tot
t

6 0 H(t) =

∫

B0

ρ0vt · vt + ψt + (θt − θ∞) ηt

2 Energy-consistent finite element method

H(T)−H(t0) =

∫

T

∫

B0

ρ0vt ·
∂vt

∂t
+

∫

T

∫

B0

ρ0

∂vt

∂t
·

[
∂ϕ

t

∂t
− vt

]

+

∫

T

∫

B0

∂ψt

∂F
:
∂Ft

∂t
−

∫

T

∫

B0

∂ϕ
t

∂t
·

[

ρ0

∂vt

∂t
−Div[F tS t]

]

+

∫

T

∫

B0

∂ψt

∂C
int

:
∂C

int
t

∂t
+

∫

T

∫

B0

∂C
int

∂t
:

[
1

2
[C int

t ]−1
Σt −Y t

]

+

∫

T

∫

B0

(θt − θ∞)
∂ηt

∂t
−

∫

T

∫

B0

(θt − θ∞)

[
∂ηt

∂t
+

1

θt

Div[Q
t
]−

D
int
t

θt

]

+

∫

T

∫

B0

∂θt

∂t

[
∂ψt

∂θt

+ ηt

]

−

∫

T

∫

B0

∂Ft

∂t
:

[
∂ψt

∂F t

− F tSt

]

︸ ︷︷ ︸

0

= −

∫

T

∫

B0

θ∞
θt

D
tot
t 6 0
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The ehG method

1 Continuous finite elements in space

2 Continuous and discontinuous finite elements in time

◮ Continuous for hyperbolic evolution equations
◮ Continuous for local evolution equations
◮ Discontinuous for parabolic evolution equations

3 Nodal approximations of strain and entropy

C t :=

mmec∑

I=1

M
mec
I

(t)C tI
ηt :=

mthe∑

J=1

M
the
J

(t)ηtJ

4 Enhanced stress and entropy production approximations

Σ
tot,♭
α := Σ

phy,♭
α + Σ

alg,♭
α D

tot
t

= D
phy + D

alg
t

5 Advantanges

◮ Stability as energy-consistent time stepping schemes
◮ Higher order accuracy as standard Galerkin methods

6 ...but depends on the considered physical problem
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Dynamics of solid inelastic media
Oden [1972], Gurtin [1981], Miehe [1988], Holzapfel [2000], Andrews [2005], Chernyshev [2007], Fernández & Kuttler [2010]

1 Lagrangian local momentum balance

vt :=
∂ϕt

∂t

∂vt

∂t
=

1

ρ0

Div[F tS t] + bt

2 Deformation and strain measures

F t := Grad[ϕt] C t := [F ♭t ]
TF t Et :=

1

2
[C t − I ]

3 Piola/Mandel stress tensor

St := 2
∂ψt

∂C
Σ
♭
t := C tSt

4 Stress power & deformation rate tensor

Pt := Σ
♭
t

: L
♯
t

L
♯
t

:=
1

2
C
−1
t

∂C

∂t
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Isotropic finite viscoelasticity
Miehe[1988], Le Tallec et al. [1993], Kaliske [1995], Reese & Govindjee [1998], Reese [2001], Kleuter [2007], Hartmann & Hamkar [2010]

TB0 TBt

V

Ft

Fvis

t Felv

t

C t Cvis

t

C elv

t

1 Elastic metric tensor

C elv
t

:= [Fvis
t

]−TC t[F
vis
t

]−1

2 Elastic invariants

I(C elv
t

) = I(C t [Cvis
t

]−1)

3 Viscous internal variable

Cvis
t

:= [Fvis,♭
t

]T Fvis
t

4 Viscous evolution equation

Σ
♭
t

= ndimVsph Sph([Lvis,♯
t

]T) + 2Vdev Dev([Lvis,♯
t

]T )

5 Viscous dissipation/rate tensor

D
vis
t

:= Σ
♭
t

: L
vis,♯
t

> 0 L
vis,♯
t

:=
1

2
[C vis

t
]−1 ∂C

vis

∂t
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Thermodynamics of solids
Oden [1972], Miehe [1988], Holzapfel & Simo [1996], Bérardi et al. [1996], Lion [1997], Reese [2000], Boukamel et al. [2001]

1 Lagrangian local entropy balance

ηt := −
∂ψt

∂θ

∂ηt

∂t
= −

1

θt

Div[Qt] +
D

vis
t

θt

+
rt

θt

2 Fourierian isotropic heat conduction law

q
t

:= −k0 (Jt F
♯
t
)−T

Grad[θt ] Q
t

:= Jt F−1
t

q
t

3 Specific heat capacity & thermal expansion

θt

∂ηt

∂θ
=: c ≥ 0

1

ndim

∂Det[F t]

∂θ
=: β ≥ 0

4 Thermal dissipation

D
cdu
t := −Grad[ln θt] ·Qt ≥ 0
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Entropy at the thermal time nodes

1 Method 1: L2-projection of the right Cauchy-Green tensor

◮ Entropy approximation at the thermal nodes

ηtJ
:= −

∂ψ(θtJ
,C tJ

)

∂θ
◮ Right Cauchy-Green tensor at the thermal nodes

C
tK
≡

mmec∑

I=1

M
mec
I

(tK )C tI

.
=

mthe∑

J=1

M
the
J

(tK )C tJ

where tK , K = 1, . . . ,Mthe (thermal quadrature points)

2 Method 2: L2-projection of the entropy density

mthe∑

K=1

∂θ
tK

∂t

[
∂ψ(θ

tK
,C

tK
)

∂θ
+ η

tK

]

wK

.
= 0

3 Discrete L2-projection in time





C t1

...
C tMthe




 := W ⊗ I






C
t1

...
C

tMthe











ηt1

...
ηtMthe




 := −W






∂θψt1

...
∂θψtMthe





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Current configurations of the flying square
(kmec

= 4,kthe
= 4,kvis

= 4, method 2)

Height h 1 cm
Width b 1 cm

Thermoviscoelastic Simo-Taylor material

Mass density ρ0 8.93 kg/cm2

First Lamé constant µ 7.5 J/cm2

Second Lamé constant λ 30 J/cm2

Deviatoric viscosity Vdev 10 kJs/cm2

Spherical viscosity Vsph 50 kJs/cm2

Specific heat capacity c 0.1 kJ/cm2K
Heat expansion coefficient β 10−4 K−1

Heat conduction coefficient k0 0.01 kW/K
Ambient temperature Θ∞ 298.15 K

Global iteration tolerance tol 10−6 J
Local iteration tolerance tolevo 10−10 J/cm2

Maximum number of iterations maxit 10

Number of spatial elements nel 4
Number of spatial nodes nno 9
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Relative L2-error of the flying square
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Relative L2-error of the flying square
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Relative L2-error of the flying square
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Current configurations of the free flying ring
(kmec

= 2,kthe
= 1,kvis

= 2,method 2)

Inner radius Ri 0.5 cm
Outer radius Ra 1.5 cm

Thermoviscoelastic Simo-Taylor material

Mass density ρ0 10 kg/cm2

First Lamé constant µ 7.5 kJ/cm2

Second Lamé constant λ 30 kJ/cm2

Deviatoric viscosity Vdev 10 kJs/cm2

Spherical viscosity Vsph 50 kJs/cm2

Specific heat capacity c 0.3 kJ/cm2K
Heat expansion coefficient β 10−4 K−1

Heat conduction coefficient k0 0.3 kW/K
Ambient temperature Θ∞ 298.15 K

Global iteration tolerance tol 10−6 J
Local iteration tolerance tolevo 10−10 J/cm2

Maximum number of iterations maxit 10

Number of spatial elements nel 416
Number of spatial nodes nno 448
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Nodal solution of the free flying ring
(kmec

= 2,kthe
= 1,kvis

= 2,method 2)
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Physical structure of the free flying ring
(kmec

= 2,kthe
= 1,kvis

= 2,method 2)
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Number of iterations of the free flying ring
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Summary and Outlook
1Kuhl & Ramm [1999], Ibrahimbegovic, Chorfi & Gharzeddine [2001], Hartmann, Quint & Arnold [2008]

1 Goal: A stable Galerkin-based time integration method

◮ take into account different time scales
◮ despite of a monolithic solution strategy

2 Algorithmic basis: The Galerkin-based ehG method

◮ energy-momentum consistent
◮ higher-order accurate
◮ more stable as standard methods

3 Algorithmic upgrade: Multiscale time integration

◮ projected entropy approximation (method 1 or method 2)
◮ method 1 includes the original ehG method
◮ both projections show here comparable accuracy and stability

4 Results: Multiscale time integration with ehG(kmec, kthe, kvis)

◮ is able to increase its accuracy order
◮ decrease its computational cost (prescribed accuracy)
◮ improve its stability (compared to the original ehG(k) method)

5 Outlook: A stable adaptive time integration method 1
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