Fakultät für Maschinenbau

Institut für Füge- und Montagetechnik Professur Montage- und Handhabungstechnik Prof. Dr.-Ing. Maik Berger

Entwicklung eines Warenabzugs zur Herstellung stark unebener Geotextilien mittels Wirktechnik

Zielstellung

Ziels

Technischer Hintergrund und Anforderungen

Methodik & Konstruktion

Ergebnisse

Hintergrund

- Klimawandel → Zunahme von Starkregen
 → erhöhte Erosion an Böschungen.
- Geotextilien als nachhaltige Lösung zur Stabilisierung von Hängen.

Technologische Herausforderung

- Neues Geotextil: Grobes Gitter mit Naturfaserschussstrang.
- Konventionelle Warenabzüge ungeeignet wegen variierender Gitterdicke.

Ziel der Arbeit

- Untersuchung bestehender Warenabzüge
- Entwicklung eines neuen Warenabzugs, der den Anforderungen des neuartigen Geotextils gerecht wird.

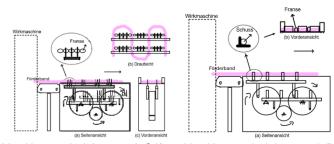
Stand der Technik

Warenabzug:

- Walzenabzug: Flexibel, aber bei stark variierenden Materialdicken problematisch.
- Bandabzug: Geeignet für gleichmäßige Materialien, stößt bei unregelmäßigen Dicken an Grenzen.

Aktive Patente:

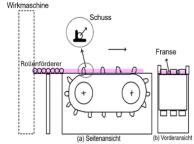
- Materialdicken-Anpassung: Patente wie CN102704183B und CN216403298U setzen bewegliche Walzen ein, um unterschiedliche Dicken zu verarbeiten.
- Spannungsregulierung: Patente wie CN115948845A fokussieren auf präzise Materialspannung, um Materialien sicher und konstant zu führen.
- Die aktiven Patente sind bei Materialien mit starken Dickenunterschieden und strukturellen Unregelmäßigkeiten nicht anwendbar.


Anforderungsliste

Kernanforderungen an den Warenabzug:

Nr.	Art	Anforderungen	Min.	Soll	Höch.	Ein.
		Geometrie				
01	F	Größe der Anlage:				
		Breite			2,4	m
		Länge			1,5	m
		Höhe			2	m
02	F	Hauptabmessungen der Matte:				
		Breite		2		m
		Höhe	15		150	mm
		Fransendurchmesser	15		20	mm
		Anzahl der Fransen		4		-
		Schussdurchmesser	12		15	cm
		Mäanderabstand		30		cm
		Kinematik				
03	F	Geschwindigkeit des Warenabzugs		5		m/min
		Kraft				
04	F	Zugkraft auf das Gitter (mit Breite 2m)	1		5	kN

Diese Anforderungen sind entscheidend für die Entwicklung eines passenden Warenabzugs.


Lösungsvarianten

V1: Abzugseinrichtung mit Stiften V2: Abzugseinrichtung mit Platten

V4: Linearachsen mit Klemmen V5: Portalrahmen mit Parallelgreifer

V3: Zugmittelgetriebe mit Mitnehmern

Die Variante 3 (V3) wurde als die beste Lösung gewählt:

- Einfache Struktur
- Tolerant gegenüber Positionierungsungenauigkeiten
 - Geringe Belastung der Matte

Konstruktionsschritte

- Auswahl des geeigneten Förderertyps und Kettentyps, um Material sicher zu transportieren.
- Positionierung der Verbindungselemente und Mitnehmer für effiziente Materialführung.
- Entwurf der Kettenführungsschiene und Spannvorrichtung, um konstante Spannung zu gewährleisten.
- Konstruktive Auslegung der Kettenräder zur Unterstützung der stabilen Bewegung.
- Wahl der Antriebseinheit und Konstruktion des Gestells, um Robustheit und Effizienz zu sichern.

Finale Konstruktion

3D-Modellvisualisierung: Struktur des Fördersystems

Zusammenfassung & Ausblick

Zusammenfassung:

 Kettenförderer mit Mitnehmern: Speziell für grobe, inhomogene Naturfasergeotextilien entwickelt.

Ausblick:

- Präzise Analyse der mechanischen Eigenschaften von Heufasern (Zugfestigkeit, Reibungskoeffizient) zur Feinoptimierung der Mitnehmergeometrie.
- Abstimmung des Warenabzugs auf die neu entwickelte Wirkmaschine (Höhe, Neigung, Geschwindigkeit).
- Erweiterte Tests: Langzeitbelastung und dynamische Stabilität.
- Adaption des Systems für andere Naturfasermaterialien oder Industriezweige.