TU-Chemnitz, Fakultät für Mathematik

Vorlesung: Prof. Dr. Martin Stoll Übung: Dr. Roman Unger

Homepage zur Übung: https://www.tu-chemnitz.de/mathematik/wire/WS1819/nla.php

11. Some estimations

1. Let $B \in \mathbb{R}^{n \times n}$ mit ||B|| < 1. Proof the existence of $(I + B)^{-1}$ and that the estimation

$$\frac{1}{1+||B||} \le ||(I+B)^{-1}|| \le \frac{1}{1-||B||}$$

holds.

2. Let $A, \tilde{A} \in \mathbb{R}^{n \times n}$ and A regular. Moreover holds $||A^{-1}|| \leq \beta$, $||A - \tilde{A}|| \leq \alpha$ and $\alpha\beta < 1$. Proof that in this case, \tilde{A} is regular too and

$$||\tilde{A}^{-1}|| \le \frac{1}{1 - \alpha\beta} ||A^{-1}||$$
 as well $||A^{-1} - \tilde{A}^{-1}|| \le \frac{\beta^2}{1 - \alpha\beta} ||A - \tilde{A}||$

holds.

- 3. Let $A \in \mathbb{R}^{n \times n}$ be regular. What can be said about the environment of A ?
- 4. We consider a diagonalisable matrix $A \in \mathbb{C}^{n \times n}$ and a disturbance $\delta A \in \mathbb{C}^{n \times n}$. Proof that every eigenvalue η in the spectrum of $A + \delta A$ has a maximum distance of

$$\min_{\lambda_i \in W \text{ von} A} |\eta - \lambda_i| \le ||S^{-1} \delta A S|| \le \kappa(S) ||\delta A||$$

with condition number $\kappa(S)$ and $S = [v_1, \cdots v_n]$ eigenvectors of A. What happens in case $A = A^*$?.

5. Let T be a tridiagonal matrix

with $\alpha_i \in \mathbb{R}$ and $\gamma_i = \overline{\beta}_i$, such that T is hermitian. Furthermore $\gamma_i \neq 0, i = 1 \cdots n - 1$. Proof that all eigenvalues of T are simple and real.

What happens if the condition $\gamma_i \neq 0, i = 1 \cdots n - 1$ is hurt ?