TU-Chemnitz, Fakultät für Mathematik

Vorlesung: Prof. Dr. Martin Stoll Übung: Dr. Roman Unger
Homepage zur Übung: https://www.tu-chemnitz.de/mathematik/wire/WS1819/nla.php

9. Projections and Krylov spaces

1. Proof the following invariances of krylov spaces $\mathcal{K}_{m}(A, \mathbf{v})$:
1.1. $\mathcal{K}_{m}(\alpha A, \beta \mathbf{v})=\mathcal{K}_{m}(A, \mathbf{v}) \quad \forall \alpha, \beta \in \mathbb{C} \backslash 0$
1.2. $\mathcal{K}_{m}(A-\sigma I, \mathbf{v})=\mathcal{K}_{m}(A, \mathbf{v}) \quad \forall \sigma \in \mathbb{C}$
1.3. $\mathcal{K}_{m}\left(T A T^{-1}, T \mathbf{v}\right)=T \mathcal{K}_{m}(A, \mathbf{v}) \quad \forall$ regular $T \in \mathbb{C}^{n \times n}$
2. 2.1. Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{M}$ eigenvectors of a matrix $A \in \mathbb{C}^{n \times n}$ to pairwise different eigenvalues $\lambda_{1}, \ldots, \lambda_{M} \in$ $\mathbb{C} \backslash\{0\}$. Moreover let $\mathbf{v}=\beta_{1} \mathbf{x}_{1}+\ldots+\beta_{M} \mathbf{x}_{M}$ with $\beta_{j} \neq 0$ for all $j=1, \ldots, M$.
Proof, that for the grade $d(A, \mathbf{v})$ (in german: Abbruchindex) of the krylov-sequence $A^{m} \mathbf{v}$ holds: $d(A, \mathbf{v})=M$.
2.2. Let $A \in \mathbb{C}^{n \times n}$ invertable and $\mathbf{v} \in \mathbb{C}^{n} \backslash\{\mathbf{0}\}$. Show that

$$
d=d(A, \mathbf{v})=\min \left\{m: A^{-1} \mathbf{v} \in \mathcal{K}_{m}(A, \mathbf{v})\right\} .
$$

3. Let $P_{1}=P_{\mathcal{R}_{1}, \mathcal{S}_{1}}$ and $P_{2}=P_{\mathcal{R}_{2}, \mathcal{S}_{2}}$ projections in \mathbb{C}^{n}.
3.1. Proof that:

$$
P_{1} P_{2}=0 \quad \Longrightarrow \quad \mathcal{R}_{1} \cap \mathcal{R}_{2}=\{\mathbf{0}\}
$$

and, if P_{1} and P_{2} are orthogonal it holds

$$
P_{1} P_{2}=0 \quad \Longleftrightarrow \quad \mathcal{R}_{1} \cap \mathcal{R}_{2}=\{\mathbf{0}\} .
$$

Find a counterexample which shows that the equivalence in the non orthogonal case is not true.
3.2. Proof that: $Q=P_{1}+P_{2}$ is a projection if and only if $P_{1} P_{2}=P_{2} P_{1}=0$.

Determine for that case image and kernal of Q and an und examine with this if Q is orthogonal if P_{1} and P_{2} are orthogonal.
3.3. Show: If $P_{1} P_{2}=P_{2} P_{1}$, then $Q=P_{1} P_{2}$ is a projection.

Determine again under this assumption image and kernal of Q and show that Q is orthogonal if this is true for P_{1} and P_{2}.
3.4. Proof that

$$
P_{\mathcal{W}_{m}}=P_{\mathcal{V}_{m}} \cdots P_{\mathcal{V}_{1}},
$$

where are $\mathcal{V}_{j}=\operatorname{span}\left\{\mathbf{v}_{j}\right\}^{\perp}, \mathcal{W}_{m}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\}^{\perp}$ and $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\}$ a orthonormal base(of $\left.\mathcal{K}_{m}(A, \mathbf{b})\right)$.

