TU-Chemnitz, Fakultät für Mathematik

Vorlesung: Prof. Dr. Martin Stoll Übung: Dr. Roman Unger

Homepage zur Übung: https://www.tu-chemnitz.de/mathematik/wire/WS1819/nla.php

8. Projections

- 1. Specify the idempotent matrices $P_{\mathcal{R},\mathcal{S}}$ for the Projection onto \mathcal{R} orthogonal to \mathcal{S} :
 - 1.1. $\mathcal{R} = span\{(1,0)^{\top}\}$ und $\mathcal{S} = span\{(1,1)^{\top}\},\$
 - 1.2. $\mathcal{R} = span\{(1,2)^{\top}\} = \mathcal{S}.$
- 2. Let $\mathbf{u} \in \mathbb{R}^n$ with $\|\mathbf{u}\| = 1$ and $P = \mathbf{u}\mathbf{u}^\top$ as soon as $Q = I_n \mathbf{u}\mathbf{u}^\top$.
 - 2.1. Determine image and kernel of P and Q and proof that both are orthogonal projectors.
 - 2.2. Show that rank(P) = 1 und rank(Q) = n 1. Determine all eigenvalues and appropriate subspaces of P and Q.
- 3. Let \mathcal{R} and \mathcal{S}^{\perp} non-empty, complementary subspaces of \mathbb{C}^n . Prrof the following statements about projections.
 - 3.1. $I_n P_{\mathcal{R},\mathcal{S}} = P_{\mathcal{S}^{\perp},\mathcal{R}^{\perp}}.$
 - 3.2. $P_{\mathcal{R},\mathcal{S}}^{\top}$ ist a projection.
 - 3.3. Every projection $P = P_{\mathcal{R},\mathcal{S}}$ is *diagonalisable*, i.e., it exists a regular matrix $T \in \mathbb{C}^{n \times n}$, such that TPT^{-1} is a diagonal matrix. To which diagonal matrix is P similar?
 - 3.4. For every projection $P_{\mathcal{R},\mathcal{S}}$ there is $||P_{\mathcal{R},\mathcal{S}}|| \ge 1$. Moreover equality is given if and only if $P_{\mathcal{R},\mathcal{S}}$ is an orthogonal projection.
 - 3.5. A projection $P_{\mathcal{R},\mathcal{S}}$ is symmetric (self adjoint respective to an inner product) if and only if it is an orthogonal projection.