TU-Chemnitz, Fakultät für Mathematik

Vorlesung: Prof. Dr. Martin Stoll Übung: Dr. Roman Unger
Homepage zur Übung: https://www.tu-chemnitz.de/mathematik/wire/WS1819/nla.php

8. Projections

1. Specify the idempotent matrices $P_{\mathcal{R}, \mathcal{S}}$ for the Projektion onto \mathcal{R} orthogonal to \mathcal{S} :
1.1. $\mathcal{R}=\operatorname{span}\left\{(1,0)^{\top}\right\}$ und $\mathcal{S}=\operatorname{span}\left\{(1,1)^{\top}\right\}$,
1.2. $\mathcal{R}=\operatorname{span}\left\{(1,2)^{\top}\right\}=\mathcal{S}$.
2. Let $\mathbf{u} \in \mathbb{R}^{n}$ with $\|\mathbf{u}\|=1$ and $P=\mathbf{u} \mathbf{u}^{\top}$ as soon as $Q=I_{n}-\mathbf{u} \mathbf{u}^{\top}$.
2.1. Determine image and kernel of P and Q and proof that both are orthogonal projectors.
2.2. Show that $\operatorname{rank}(P)=1$ und $\operatorname{rank}(Q)=n-1$. Determine all eigenvalues and appropriate subspaces of P and Q.
3. Let \mathcal{R} and \mathcal{S}^{\perp} non-empty, complementary subspaces of \mathbb{C}^{n}. Prrof the following statements about projections.
3.1. $I_{n}-P_{\mathcal{R}, \mathcal{S}}=P_{\mathcal{S}^{\perp}, \mathcal{R}^{\perp}}$.
3.2. $P_{\mathcal{R}, \mathcal{S}}^{\top}$ ist a projection.
3.3. Every projection $P=P_{\mathcal{R}, \mathcal{S}}$ is diagonalisable, i.e., it exists a regular matrix $T \in \mathbb{C}^{n \times n}$, such that $T P T^{-1}$ is a diagonal matrix.
To which diagonal matrix is P similar?
3.4. For every projection $P_{\mathcal{R}, \mathcal{S}}$ there is $\left\|P_{\mathcal{R}, \mathcal{S}}\right\| \geq 1$. Moreover equality is given if and only if $P_{\mathcal{R}, \mathcal{S}}$ is an orthogonal projection.
3.5. A projection $P_{\mathcal{R}, \mathcal{S}}$ is symmetric (self adjoint respective to an inner product) if and only if it is an orthogonal projection.
