TU-Chemnitz, Fakultät für Mathematik

Vorlesung: Prof. Dr. Martin Stoll
Übung: Dr. Roman Unger
Homepage zur Übung: https://www.tu-chemnitz.de/mathematik/wire/WS1819/nla.php

6. Iterative Methods I

Please hand in questions $1,2,4$.

1. Implement Richardson iteration, Jacobi iteration and Gauss-Seidel iteration! Test your code on the Poisson matrix of dimension n for some values of n ! ($\mathrm{A}=$ gallery('poisson', n)) and right-hand side $b=\operatorname{sum}(A, 2)$.
2. (a) Show that for a symmetric matrix A that is strictly diagonally dominant the Jacobi iteration always converges.
(b) We consider the Jacobi iteration for the following matrix

$$
A=\left[\begin{array}{cccccc}
5 & 1 & 0 & 0 & 0 & 0 \\
1 & 10 & 1 & 0 & 0 & 0 \\
0 & 1 & 15 & \ddots & 0 & 0 \\
0 & 0 & \ddots & \ddots & 1 & 0 \\
0 & 0 & 0 & 1 & 495 & 1 \\
0 & 0 & 0 & 0 & 1 & 500
\end{array}\right]
$$

Give an estimate of the spectral radius of the iteration matrix based on the observations from the first homework.
3. Show that the Gauss-Seidel iteration always converges for a matrix with the assumptions from the previous question part (a).
4. We consider the Peaceman-Rachford ADI iteration described by

$$
\begin{align*}
(H+\rho I) u_{k+1 / 2} & =(\rho I-V) u_{k}+b \tag{1}\\
(V+\rho I) u_{k+1} & =(\rho I-H) u_{k+1 / 2}+b \tag{2}
\end{align*}
$$

which solves the linear system $(H+V) u=b$.
(a) Show that this can be written as $u_{k+1}=G u_{k}+f$. What is G and f ?
(b) Verify the splitting $M=\frac{1}{2 \rho}(H+\rho I)(V+\rho I)$ and $N=\frac{1}{2 \rho}(H-\rho I)(V-\rho I)$. Show also that f from part (a) can be written as $M^{-1} b$.
5. Take the $n \times n$ matrix of the following form

$$
T=\left[\begin{array}{cccc}
\alpha & -1 & & \\
-1 & \alpha & \ddots & \\
& \ddots & \ddots & -1 \\
& & -1 & \alpha
\end{array}\right]
$$

with α a real parameter. Verify that the eigenvalues are given by $\lambda_{j}=\alpha-2 \cos (j \theta)$ with $\theta=\frac{\pi}{n+1}$ and the corresponding eigenvector is given by

$$
q_{j}=[\sin (j \theta), \sin (2 j \theta), \ldots, \sin (n j \theta)]^{T}
$$

When is the matrix T positive definite?
6. Let $A \in \mathbb{R}^{n \times n}$ symmetric. Proof (i) and (ii) of the following (nice) conditions of A :
(i) All eigenvalues λ_{i} of A are real.
(ii) Eigenvectors to different eigenvalues are orthogonal.
(iii) Algebraic and geometric multiplicities of the eigenvalues are equal.
7. A is a real symmetric positive definite matrix and $A=D-L-U$ the decomposition for the Jacobi-Iteration with the matrix $B=D^{-1}(L+U)$. Proof that B has only real eigenvalues.

