TU-Chemnitz, Fakultät für Mathematik

Vorlesung: Prof. Dr. Martin Stoll Übung: Dr. Roman Unger
Homepage zur Übung: https://www.tu-chemnitz.de/mathematik/wire/WS1819/nla.php

5. Sherman-Morrison und Moore-Penrose-Inverse

1. Proof the Sherman-Morrison-Formula for $A \in \mathbb{R}^{n \times n}, U, V \in \mathbb{R}^{n \times k}$ with $k \ll n$.

$$
\left(A+U V^{T}\right)^{-1}=A^{-1}-A^{-1} U\left(I_{k}+V^{T} A^{-1} U\right)^{-1} V^{T} A^{-1}
$$

Wherefore this formula could be useful ?
2. Let $A \in \mathbb{R}^{n \times n}$ with large n occupied like follows

$$
A=\left[\begin{array}{cccccc}
* & * & * & * & * & * \\
* & * & & & & * \\
\vdots & & \ddots & & & \vdots \\
* & & & & * & * \\
* & * & * & * & * & *
\end{array}\right]
$$

Find an effective way to solve the linear system $A x=b$.
3. Recapitulate the relationships between normal equations, least square problems and overdetermined linear systems.
4. Let $A \in \mathbb{R}^{m \times n}$ and $r:=\operatorname{rank}(A)=\min \{m, n\}$. Show that

$$
A^{\dagger}=\left\{\begin{array}{lll}
\left(A^{T} A\right)^{-1} A^{T} & \text { if } & r=n \leq m \\
A^{T}\left(A A^{T}\right)^{-1} & \text { if } \quad r=m \leq n \\
A^{-1} & \text { if } \quad r=m=n
\end{array}\right.
$$

5. Decide: The Moore-Penrose-Inverse is
a) the generalized inverse.
b) one generalized inverse.
6. Proof the following relations:
a)

$$
\begin{aligned}
\left(A^{\dagger}\right)^{\dagger} & =A \\
\left(A^{\dagger}\right)^{T} & =\left(A^{T}\right)^{\dagger} \\
0^{\dagger} & =0 \\
(\lambda A)^{\dagger} & =\frac{1}{\lambda} A^{\dagger} \quad \forall \lambda \neq 0
\end{aligned}
$$

b) Let $A=F G$ with $A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A)=r, F \in \mathbb{R}^{m \times r}, G \in \mathbb{R}^{r \times n}$, then holds

$$
A^{\dagger}=G^{\dagger} F^{\dagger}\left(=G^{T}\left(G G^{T}\right)^{-1}\left(F^{T} F\right)^{-1} F^{T}\right)
$$

c) For $A=U B V^{T}$ with orthogonal $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$, and $B \in \mathbb{R}^{m \times n}$, it holds $A^{\dagger}=V B^{\dagger} U^{T}$.
d) If $A=\left[\begin{array}{c}B \\ 0\end{array}\right]$, then $A^{\dagger}=\left[\begin{array}{ll}B^{\dagger} & 0\end{array}\right]$.

