TU-Chemnitz, Fakultät für Mathematik

Vorlesung: Prof. Dr. Martin Stoll Übung: Dr. Roman Unger
Homepage zur Übung: https://www.tu-chemnitz.de/mathematik/wire/WS1819/nla.php

4. Gaussian Elimination

Please hand in questions $1,3,4,5$. For the Matlab question a printout of the output of your Matlab routines is fine.

1. Let A be an $n \times n$ square matrix. Show using Gaussian elimination that $A x=b$ has a unique solution iff (if and only if) the diagonal entries $u_{j j}$ of U from the LU factorization of $A=L U$ are nonzero. (Hint: Consider determinants).
2. Suppose that the $n \times n$ matrix A is written in block-form, i.e.,

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

with $A_{11} \in \mathbb{R}^{m, m}$ and $A_{22} \in \mathbb{R}^{n-m, n-m}$ as well as A_{11} and A being invertible.
(a) Verify that

$$
\left[\begin{array}{cc}
I & 0 \\
-A_{21} A_{11}^{-1} & I
\end{array}\right]\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]=\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}-A_{21} A_{11}^{-1} A_{12}
\end{array}\right]
$$

Here $A_{22}-A_{21} A_{11}^{-1} A_{12}$ is called the Schur-complement of A.
(b) What are the conditions on the Schur-complement $S=A_{22}-A_{21} A_{11}^{-1} A_{12}$ (provided A_{11}^{-1} exists) for A to be invertible?
3. Show that if Gaussian elimination with partial pivoting is applied to a matrix $A \in \mathbb{R}^{4,4}$ that we can write

$$
L_{3} P_{3} L_{2} P_{2} L_{1} P_{1}=L_{3}^{\prime} L_{2}^{\prime} L_{1}^{\prime} P_{3} P_{2} P_{1}
$$

and define L_{j}^{\prime}.
4. Perform (by hand) Gaussian elimination with partial pivoting on the following matrix

$$
A=\left[\begin{array}{llll}
2 & 1 & 1 & 0 \\
4 & 3 & 3 & 1 \\
8 & 7 & 9 & 5 \\
6 & 7 & 9 & 8
\end{array}\right]
$$

Based on Question 3 write down the factorization $P A=L U$. Verify your result by using Matlab's 1 u command. Implement Gaussian elimination without pivoting and compare the results when solving for the right hand side $b=\operatorname{sum}(A, 2)$. Now again compare $L U$ with and without (your function) pivoting for the matrix

$$
A=\left[\begin{array}{cccc}
1 e-6 & 1 & 1 & 0 \\
4 & 3 & 3 & 1 \\
8 & 7 & 9 & 5 \\
6 & 7 & 9 & 8
\end{array}\right]
$$

with the right hand side given by $b=\operatorname{sum}(A, 2)$. You want to look at the residual in both cases norm (b-Ax).
5. Show that for a matrix A that is strictly column diagonally dominant, i.e.,

$$
\left|a_{j j}\right|>\sum_{i=1, i \neq j}^{n}\left|a_{i j}\right|
$$

Gaussian elimination with partial pivoting does not need to perform any row interchanges.

