Prof. Dr. Vladimir Shikhman Professur für Wirtschaftsmathematik Technische Universität Chemnitz

Mathematische Modelle in den Wirtschaftswissenschaften (WS 2016-17) Übung 15: Wachstumsmodell nach Solow

Das Wachstumsmodell nach Solow beschreibt die zeitliche Entwicklung von Kapital K und Arbeit L mit Hilfe folgender Differentialgleichungen:

$$\dot{K} = sTQ, \quad \dot{L} = \lambda L,$$

wobe
iQ=f(K,L) Produktionsfunktion, s Sparquote,
 λ Bevölkerungswachstumsrate und T Technologienive
au sind.

- 1) Im Wachstumsmodell von Solow sei die Cobb-Douglas Produktionsfunktion $f(K, L) = K^{\alpha}L^{1-\alpha}$, $\alpha \in [0, 1]$, angenommen.
 - (a) Leiten Sie die zeitliche Entwicklung des Pro-Kopf-Kapitals $k := \frac{K}{L}$ her.
 - (b) Finden Sie das Gleichgewicht von Pro-Kopf-Kapital als deren Grenzwert.
 - (c) Untersuchen Sie die Abhängigkeit von Pro-Kopf-Output bzgl. s und λ .
- 2) Die Goldene Regel der Akkumulation beschreibt diejenige Sparquote s in einer Volkswirtschaft, durch die der Pro-Kopf-Konsum im Gleichgewicht k(s) maximiert wird:

$$\max_{s} \quad (1-s)Tf(k(s),1).$$

- (a) Formulieren und interpretieren Sie die notwendige Optimalitätsbedingung für die Goldene Regel der Akkumulation.
- (b) Wie lautet die Goldene Regel der Akkumulation im Falle der Cobb-Douglas Produktionsfunktion?