Prof. Dr. Vladimir Shikhman Professur für Wirtschaftsmathematik Technische Universität Chemnitz

Übungsleiter: David Müller

david.mueller@mathematik.tu-chemnitz.de

Mathematische Modelle in den Wirtschaftswissenschaften (WS 2018-19) Übung 7: Dualität der Linearen Optimierung

1) Die Daten zur landwirtschaftlichen Produktion sind in einem Betrieb wie folgt gegeben:

	Flächenbedarf ha/kg	Arbeitsaufwand St/kg	Ertrag Euro/kg
Raps	1.2	1.6	18
Weizen	0.5	0.5	9
Gerste	0.8	1.0	17
Mais	1.6	2.0	20
Ressource	500 ha	550 St	

- (i) Formulieren Sie das Problem des maximalen Ertrages.
- (ii) Wie lautet das duale Problem der Kostenminimierung?
- (iii) Lösen Sie das duale und primale Problem.
- 2) Ein Unternehmen verfügt über drei Fabriken, in welchen zwei Güter gemeinsam hergestellt werden. In der folgenden Tabelle finden Sie die zur Herstellung einer Einheit des jeweiligen Gutes benötigten Stunden.

	Fabrik 1	Fabrik 2	Fabrik 3
Gut A	10	20	20
Gut B	20	10	20

Die Vertriebsabteilung in Ihrem Unternehmen konnte einen neuen Auftrag akquirieren, weswegen 300 EH von Gut A und 500 EH von Gut B produziert werden sollen. Die Betriebskosten pro Stunde in den entsprechenden Fabriken belaufen sich hierbei auf $10000 \in$, $8000 \in$ sowie $11000 \in$.

- (i) Seien y_1, y_2, y_3 die Stunden in den jeweiligen Fabriken. Entwerfen Sie das Produktionsprogramm unter der Prämisse, dass Ihr Unternehmen so effizient wie möglich produzieren will.
- (ii) Formulieren Sie das duale Problem und lösen Sie dieses.
- (iii) Bestimmen Sie mithilfe der Lösung aus (ii) den optimalen Belegungsplan für Ihr Unternehmen.

- 3) Es seien Anleihen zu Preisen p_i und mit festgesetzten Auszahlungen Z_i^k für das k-te Jahr, $k=1,\ldots n,\ i=1,\ldots I,$ auf dem Markt angeboten. Es sollten Cashflows C_1,\ldots,C_n sichergestellt werden.
 - (i) Formulieren Sie das Problem der Portfoliooptimierung.
 - (ii) Stellen Sie das zugehörige duale Problem der Diskontoptimierung auf.
- (iii) Interpretieren Sie die dualen Multiplikatoren als Diskontierungsfaktoren.
- 4) Benutzen Sie die Theorie der Linearen Optimierung, um die Lösbarkeit des folgenden Systems bzgl. x nachzuweisen:

$$Px = x, \quad x \ge 0, \quad e^T x = 1,$$

wobei $P \ge 0$ und $e^T P = e^T$. Schliessen Sie daraus auf die Existenz der stationären Markenverteilung, des Google-Rankings und der Gleichgewichtspreise in einer Tauschwirtschaft.